期刊文献+

热冲击下机械结构非线性热力耦合模型的建立 被引量:4

Research on Nonlinear Thermal-mechanical Coupling Model of Mechanical Structure under Heat Shock
下载PDF
导出
摘要 在热弹性耦合理论的基础上 ,考虑热冲击作用下弹塑性变形功的影响 ,建立了非线性热力耦合有限元模型。其中包括 :基于能量守恒原理建立的非线性瞬态温度场模型 ;考虑几何非线性及材料非线性的位移场模型 ;求得改进应力场的最小二乘法模型。基于FEPG软件平台进行了实例求解 ,计算结果表明了此耦合模型的有效性。此模型的建立 ,拓展了热力耦合理论的应用范围 ,具有较高的工程实用价值。 Based on the coupled-thermo-elastic theory and considering the influence of elastic-plastic deformation work, a finite-element model for coupled-thermal-mechanical analysis is established under the condition of pure heat shock. The coupling model includes three equations: the nonlinear transient temperature-field equation founded on principle of conservation of energy, the displacement-field equation for geometrical and material nonlinearity, and stress-field equation introducing least square method to improve calculation precision. A detail computation of an example is performed with FEPG finite element program generator software. The numerical results demonstrates the efficiency of the coupling model, which broadens the applied range of coupling thermal-mechanical theory from elasticity to plasticity.
机构地区 上海交通大学
出处 《应用力学学报》 EI CAS CSCD 北大核心 2004年第4期43-46,共4页 Chinese Journal of Applied Mechanics
关键词 热冲击 弹塑性 变形功 非线性 热力耦合 有限元 heat shock, elastic-plasticity, deformation work, nonlinearity, thermal-mechanical couple, finite element.
  • 相关文献

参考文献6

  • 1I. Harari, S. Frey, L. P. Franca. A note on a recent study of stabilized finite element computation for heat conduction[J]. Computational Mechanics, 2002, 28(1): 63-65
  • 2A. W. Lessia. Recent Studies in Plate Vibrations: 1981-85, Part Ⅱ Complicating effects[J]. Shock Vib. Dig., 1987, 119[3]: 10-24
  • 3K. Preis, O. Biro, K. R. Richter. Application of FEM to Coupled Electric, Thermal and Mechanical Problems[J]. IEEE Transactions on Magnetics, 1994, 30(5): 3316-3319
  • 4S. Boggs, J. Kuang, H. Andoh. Electro-Thermal-Mechanical Computations in ZnO Arrester Elements[J]. IEEE Transactions on Power Delivery, 2000, 15(1):128 -134
  • 5P. Sharifi, D. N. Yates. Nonlinear Thermo-Elastic- Plastic and Creep Analysis by the Finite-Element Method[J]. AIAA JOURNAL, 1974, 12[9]: 1210-1215
  • 6H. Jensen, A. Cifuentes. Improved approximations for structural reliability in thermal analysis[A]. In: T. J. Watson, IBM- Engineering Technology Report[C]. New York, IEEE, 1995: 1-20

同被引文献23

  • 1邓晓龙,赵新泽.不同网格密度的柴油机气缸体有限元模态分析[J].拖拉机与农用运输车,2005,32(3):53-55. 被引量:6
  • 2陈增生.MLCC常见问题及解决途径[J].电子工艺技术,2006,27(6):336-338. 被引量:12
  • 3张延博.基于虚拟仪器技术的电子时间引信检测系统研究[D].石家庄:军械工程学院,2008.
  • 4何纯孝,王永立.贵金属材料加工手册[M].北京:冶金工业出版社,1978.123-133.
  • 5ZHAO Y, BASARAN C, CARTWRIGHT A. Inelastic behavior of mieroeleetronie solder joints under concurrent vibration and thermal cycling [C]//Thermal and Thermo Mechanical Phenomena in Electronic Systems. New York: [s.n.], 2000.
  • 6SCOTTG C. Thermal stress in multilayer ceramic capacitor: numerical simulations [J]. IEEE Trans Electron Packg Manuf, 1990, 13(4): 1135-1145.
  • 7TRIGG A. Applications of infrared microscopy to IC and MEMS packaging [J]. IEEE Trans Electron Packg Manul; 2003, 26(3): 232-238.
  • 8BRIAN STARK. MEMS reliability assurance guidelines for space applications [R], California, USA: Jet Propulsion Laboratory, 1999.
  • 9HARARI I S, FREY S, FRANCA L P. A note on a recent study of stabilized finite element computation for heat conduction [J]. Comput Mech, 2002, 28(1 ): 63-65.
  • 10张国智,胡仁喜,陈继刚,等.热力学有限元分析[M].北京:机械工业出版社,2007.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部