摘要
研究了一类同时具有输入时滞以及不确定参数的关联大系统的稳定性问题 .基于所谓的还原法 ,给出一种新的状态反馈控制器的设计方法 ,这种方法的不同之处在于利用了时延的大小以及反馈控制的历史信息 .根据Lyapunov稳定性理论得到了系统在控制器作用下稳定的充分条件 ,所有条件都化成可解的标准线性矩阵不等式 (LMIs)形式 .最后给出了一个数值例子 ,说明结果的可行性 ,并和一般无记忆的控制器相比较 ,说明建立的控制器有着更好的性能 .
This paper deals with a class of large-scale systems with input delay and parametric uncertainties. The stability of this class of systems is considered. Using the so-called reduction method, all subsystems are transferred. Then, a feedback controller design technique for decentralized stabilization is provided. Unlike existing results, the controller utilizes the information on the size of the delay and employs the feedback of the past control history as well as the current state; thus, performance is improved and conservativeness is reduced significantly. With Lyapunov's direct method, a sufficient condition for the stability is derived in terms of linear matrix inequalities (LMIs). Hence, all results can be solved efficiently. Finally, a numerical example is provided to illustrate the proposed method.
出处
《中国科学院研究生院学报》
CAS
CSCD
2005年第1期38-45,共8页
Journal of the Graduate School of the Chinese Academy of Sciences
基金
theNationalNaturalScienceFoundationofChina( 90 40 5 0 11)