期刊文献+

Metropolitan Pollution Reduction by Intelligent Negotiation 被引量:2

Metropolitan Pollution Reduction by Intelligent Negotiation
下载PDF
导出
摘要 This paper discusses the issue of pollution reduction in metropolises by means of intelligent negotiation in multi-agent systems. For situations of complete information, it gives a stochastic hill-climbing search algorithm for computing the pollution-reduction solutions; For situations of incomplete information, it puts forward a genetic algorithm for computing the best solutions for every plants subjectively and proposes market-mechanism-based algorithm for computing the emission-redistribution solutions objectively. Key words intelligent negotiation - game theory - pollution reduction - genetic algorithm CLC number TP 391.1 Foundation item: Supported by the National 863 Project (2002AA134020-04)Biography: HAN Wei (1975-) male, Ph.D. candidate, research direction: MAS and Electronic Commercial. This paper discusses the issue of pollution reduction in metropolises by means of intelligent negotiation in multi-agent systems. For situations of complete information, it gives a stochastic hill-climbing search algorithm for computing the pollution-reduction solutions; For situations of incomplete information, it puts forward a genetic algorithm for computing the best solutions for every plants subjectively and proposes market-mechanism-based algorithm for computing the emission-redistribution solutions objectively. Key words intelligent negotiation - game theory - pollution reduction - genetic algorithm CLC number TP 391.1 Foundation item: Supported by the National 863 Project (2002AA134020-04)Biography: HAN Wei (1975-) male, Ph.D. candidate, research direction: MAS and Electronic Commercial.
出处 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第5期629-632,共4页 武汉大学学报(自然科学英文版)
基金 theNational863Project(2002AA13402004)
关键词 intelligent negotiation game theory pollution reduction genetic algorithm intelligent negotiation game theory pollution reduction genetic algorithm
  • 相关文献

参考文献1

同被引文献16

  • 1韩伟,王云,陈优广.基于多智能体协商的电子市场原料配置模型[J].计算机应用,2006,26(12):3008-3011. 被引量:5
  • 2韩伟,韩忠愿,苏杭丽.一种强调私密性的多智能体协商模型[J].计算机应用,2007,27(4):942-944. 被引量:3
  • 3Littman M L.Markov games as a framework for multi-agent reinforcement learning[C]//New Brunswick:Proceeding of 11th International Conference on Machine Learning.California:Springer Press,1994:157-163.
  • 4Hu J.Multiagent reinforcement learning:theoretical framework and algorithm[C]//Kaufmannin.Proceeding of 15th International Conference on Machine Learning.Califomia:Springer Press,1998:242-250.
  • 5Bowling M,Veloso M.Rational and convergent learning in stochastic games[C]//Veloso M.Proceeding of IJCAI-01.Seattle:World Press,2001:1021-1026.
  • 6Bowling M.Multiagent learning using a variable learning rate[J].Artificial Intelligence,2002,136:215-250.
  • 7Fudenberg D,Levine D.The theory of learning in games[M].Cambridge,MA:MIT Press,1998.
  • 8Leloup B.Pricing with local interations on agent-based electronic marketplaces[J].Electronic Commerce Research and Applications,2003(2):187-198.
  • 9Shapley L S.Sochastic games[C]//Proc Nat Acad Sci,1953,39:1095-1100.Kuhn H W.Classics in Game Theory.Princeton,NJ:Princeton University Press,1997.
  • 10Littman M L.Markov games as a framework for multi-agent reinforcement learning[C]//Proc 11th International Conference on Machine Learning,New Brunswick,NJ,Morgan Kaufmann,San Mateo,CA,1994:157-163.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部