期刊文献+

PEO-LiClO_4-ZSM-5复合聚合物电解质——ZSM-5对锂离子选择通过的影响 被引量:5

PEO-LiClO_4-ZSM-5 Composite Polymer Electrolyte——Effect of ZSM-5 on the Selective Transference of Lithium Ion
下载PDF
导出
摘要 通过溶液浇铸法制得了一系列以不同分子筛和蒙脱土为填料的 PEO基复合聚合物电解质 ,利用交流阻抗 -稳态电流方法研究了填料对复合聚合物电解质锂离子迁移数 (TL i+ )的影响 .实验结果表明 ,所有填料都有利于同时提高复合聚合物电解质的 TL i+ 和离子电导率 ,但以 Li-ZSM-5为填料时 TL i+ 最高 ,这是因为ZSM-5的特殊二维孔道结构有利于阳离子 Li+的进入 ,而排斥阴离子 Cl O- 4的通过 .较高的 TL i+ 和室温离子电导率说明 PEO-Li Cl O4 -ZSM-5有可能作为全固态锂离子聚合物电池的电解质材料 . A series of polyethylene oxide(PEO)-based composite polymer electrolytes(CPE), with different kinds of molecular sieves and montmorillonite as the filler, were obtained by solvent casting method. The effects of the filler on the lithium-ion transference number(T_ Li+) of the CPE were investigated by the method of AC impedance coupled with steady-state current techniques. The experiment results showed that the addition of all kinds of fillers could improve T_ Li+ and enhance the ionic conductivity of PEO-LiClO_4 at the same time. However, the highest T_ Li+ of 0.353 was recorded by using Li-ZSM-5 as the filler. The special two-dimension frameworks of the ZSM-5, which might let the cation Li+ to pass through and prevent the passing of the anion ClO-_4, could be used to explain the enhancement of T_ Li+ induced by Li-ZSM-5. High T_ Li+ and RT ionic conductivity ensured the use of PEO- LiClO_4-ZSM-5 as the electrolyte materials for all solid-state rechargeable lithium ion batteries.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2005年第2期330-333,共4页 Chemical Journal of Chinese Universities
基金 上海市重点科技攻关项目 (批准号 :0 2 dz110 0 2 )资助
关键词 复合聚合物电解质 锂离子迁移数 离子电导率 分子筛 ZSM-5 Composite polymer electrolyte Lithium-ion transference number Ionic conductivity Molecular sieves ZSM-5
  • 相关文献

参考文献12

  • 1赵旭,熊焕明,丁红,奚春宇,陈接胜.钼磷酸铵及钼磷酸掺杂的聚合物电解质[J].高等学校化学学报,2003,24(4):694-697. 被引量:4
  • 2Tarascon J. M, Armand M. Nature[J]. 2001, 414(6861): 359-367
  • 3Fenton D. E, Parker J. M, Wright P. V. Polymer[J]. 1973, 14(11): 589
  • 4Meyer W. H. Adv. Mater.[J]. 1998, 10(6): 439-448
  • 5Croce F, Appetecchi G. B, Persi L. et al. Nature[J]. 1998, 394(6692): 456-458
  • 6Stoeva Z, Litas I. M, Staunton E. et al. J. Am. Chem. Soc.[J]. 2003, 125(15): 4619-4626
  • 7Gadjourova Z, Andreev Y. G, Tunstall D. P. et al. Nature[J]. 2001, 412(6846): 520-523
  • 8Xi J. Y, Ma X. M, Cui M. Z. et al. Chinese Sci. Bull.[J]. 2004, 49(8): 785-789
  • 9Byrne N, Efthimiadis J, MacFarlane D. R. et al. J. Mater. Chem.[J]. 2004, 14(1): 127-133
  • 10Broyer M, Valange S, Bellat J. P. et al. Langmuir[J]. 2002, 18(13): 5083-5091

二级参考文献11

  • 1[1]Giulio A., Mario C.. Solid State Ionics[J], 2001, 145: 3-16
  • 2[2]Mendolia M. S., Farrington G. C.. Materials Chemistry and Emerging Discipline[M], Eds.: Interrante L. V., Caspar L. A., Ells A. B., Washington D.C.: American Chemical Society, 1995, 4: 107-130
  • 3[3]Xiong H. M., Zhao X., Chen J. S.. J. Phys. Chem. B[J], 2001, 105: 10 169-10 174
  • 4[4]Stainer M., Charles H. L., Whitmore D. H. et al.. J. Electrochem. Soc.[J], 1984, 131: 784-790
  • 5[5]Herranen J., Kinnunen J., Mattsson B. et al.. Solid State Ionics[J], 1995, 80: 201-212
  • 6[7]Robert C. T., Pressman H. A.. Solid State Ionics[J], 1990, 38: 207-211
  • 7[8]Papke B. L., Ratner M. A., Shriver D. F.. J. Phys. Chem. Solids[J], 1981, 42: 493-500
  • 8[9]Rieke P. C., Vanderborgh N. E.. J. Memberane Sci.[J], 1987, 32: 313-328
  • 9[10]Mioc U., Colomban P., Novak A.. J. Mol. Struc.[J], 1990, 218: 123-128
  • 10[11]Marchese L., Chen J. S., Wright P. A. et al.. J. Phys. Chem.[J], 1993, 97: 8 109-8 112

共引文献3

同被引文献59

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部