期刊文献+

一种基于遗传算法的双T-Snake模型图像分割方法 被引量:12

An Image Segmentation Method of Dual T-Snakes Model Based on the Genetic Algorithm
下载PDF
导出
摘要 Snake的初衷是为了进行图像分割,但它对初始位置过于敏感,且不能处理拓扑结构改变的问题。初始位置的敏感性可以用遗传算法来克服,因为它是一种全局优化算法,且有良好的数值稳定性。为了更精确地进行图像分割,本文提出了一种基于遗传算法的双T-Snake模型图像分割方法,它将双T-Snake模型解作为遗传算法的搜索空间,这既继承了T-Snake模型的拓扑改变能力,又加快了遗传算法的收敛速度。由于它利用遗传算法的全局优化性能,克服了Snake轮廓局部极小化的缺陷,从而可得到对目标的更精确的分割。将其应用于左心室MRI图像的分割,取得了较好的效果。 The original purpose of Snakesis is for image segmentation. The method suffers from a strong sensitivity to its initial position and can not deal with topological changes. Its sensitivity to initialization can be overcame by the genetic algorithms (GAs). The GAs is a global optimal searching algorithm and has better numerical stability. But its disadvantages are the computational complexity and the rapid increasing of computation by the augmentation of the search space. They both affect the convergence rate of the GAs. This paper presents an image segmentation method of Dual T Snakes model based on the GAs. By making use of the Dual T Snakes model, it inherits the capability of changing the topology of the T Snake, reduces the valid search space for the GAs to remedy its limitations. The solution of the Dual T Snake consists of two curves enclosing each object boundary, and it is composed the valid search space of the GAs. The optimal object boundary can be obtained through the operation of selection, crossover, and mutation. The new model can accelerate the convergence rate while inheriting the capability of changing the topology of the T Snake, avoid local minima from Snakes model, and maintain the global optimal ability of the GAs, then obtain more precise segmentation. Better results are achieved in application of this method on segmentation of cardiac magnetic resonance images.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2005年第1期38-42,共5页 Journal of Image and Graphics
基金 香港特区政府研究资助局研究项目(CUHK/4180 /01E CUHK/1 /00C)
关键词 SNAKE模型 双T-Snake模型 图像分割 遗传算法 Snake model, Dual T-Snake model, image segmentation, genetic algorithms
  • 相关文献

参考文献7

  • 1Cohen L D, Cohen I. Finite element methods for active contour models and balloons for 2-D and 3-D Images[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993,15 ( 11 ): 1131 ~1147.
  • 2McInerney T, Terzopoulos D. Toplogy adaptive deformable surfaces for medical image volume segmentation [ J ]. IEEE Transactions on Medical Image, 1999,18(10) :840 ~850.
  • 3McInerney T J. Topologically adaptable deformable models for medical image analysis [ D ]. Department of Computer Science,University of Tornoto. Canada, 1997.
  • 4Giraldi Gilson A, Strauss Edilberto, Oliveira Antonio A. A boundary extraction method based on dual-T-Snakes and dynamic programming[ A]. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition ( CVPR 2000 ) [ C ], Hilton Head, South Carolina, USA, 2000,1:1044 ~ 1049.
  • 5Kass M, Witkin A, Terzopulos D. Snakes: Active contour models[ A ]. In: Proceedings of the First International Conference on Computer Vision[ C ], London, 1987:259 ~ 269.
  • 6Leroy B, Herlin I, Cohen L D. Finite-element methods for active contour models [ A ]. In: 12th International Conference Analysis and Optimizatuion of Systems[C], Paris, France, 1996:58 ~65.
  • 7Xu G, Segawa E, Tsuji S. Robust active contours with insensitive parmenters[ J ]. Pattern Recoginetion, 1994,27 (7): 879 ~ 884.

同被引文献156

引证文献12

二级引证文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部