期刊文献+

基于连续渗流的股市指数波动模型 被引量:3

Fluctuation Model for Stock Market Index Based on Continuous Percolation
下载PDF
导出
摘要 根据概率论中连续渗流的理论,研究证券市场中的股市指数波动问题,通过建立连续渗流的概率模型,构造出了股市指数收益的随机过程,从而描述了股市的指数过程,并利用连续渗流在临界点附近的相关性质对股指波动的强与弱及股指未来的趋势进行讨论. By using the probability theory, we discuss the market index in a stock market. A continuous percolation model is constructed to describe the return process of the stock market index. Applying the properties of continuous percolation around the critical point, we discuss the strength of the fluctuations for the market index and the trends of the market index.
作者 王宁 王军
出处 《北京交通大学学报》 CAS CSCD 北大核心 2004年第6期36-38,共3页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 国家自然科学基金资助项目(70471001) 教育部教外司留学生基金资助项目([2003]406)
关键词 统计物理模型 概率论 连续渗流 Poisson点过程 证券市场 statistic physical model probability theory continuous percolation Poisson point process stock market index return process
  • 相关文献

参考文献5

  • 1Grimmett G.Percolation[M]. New York: Springer-Verlag, 1989.
  • 2Stauffer D, Penna T. Crossover in the Cont-Bounchaud Percolation Model for Market Fluctuations[J]. Physics A,1998,256:284-290.
  • 3Meester R, Roy R. Continuum Percolation[M]. Combridge: Cambridge University Press,1996.1-20;40-90.
  • 4Wang J. Random Walk on the Poisson Point of Infinite Cluster of the Continuous Percolation[J]. Math.Japonica, 1998,48(3):391-397.
  • 5Pliska S.Introduction to Mathematical Finance[M].Blackwell,1997.

同被引文献11

  • 1Stauffer D. Can percolation theory be applied to the stock market[ J]. Physics A, 1998, 7:529-538.
  • 2Stauffer D, Penna T. Crossover in the cont-bounchaud percolation model for Market fluctuations [ J 1. Physics A, 1998, 256:284-290.
  • 3Tanaka H. A percolation model of stock price fluctuations [ J ]. Japanese Kyoto Mathematical Economics, 2002, 1264 : 203-218.
  • 4Meester R, Roy R. Continuum Percolation[M]. Cambridge University Press,1996.1-20;40-90.
  • 5Pliska S. Introduction to Mathematical Finance[M]. Oxford, UK: Blackwell,1997.
  • 6Tanaka H. A Percolation Model of Stock Price Fluctuations[J]. Japanese Kyoto Mathematical Economics, 2002,1264:203-218.
  • 7Wang J. Random Walk on the Poisson Point of Infinite Cluster of the Continuous Percolation[J]. Japanese, Math. Japonica, 1998, 48(3): 391-397.
  • 8Lamberton D,Lapeyre B.Introduction to Stochastic Calculus Applied to Finance[M].New York:Chapman & Hall,2000.
  • 9Stauffer D,Penna T.Crossover in the Cont-Bouchaud Percolation Model for Market Fluctuations[J].Physica A,1998,256:284-290.
  • 10Liggett T.Stochastic Interacting Systems:Contact,Voter and ExclusionProcesses[M].Berlin Heidelberg:Springer-Verlag,1999.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部