期刊文献+

阻塞过程中正斜压涡度拟能相互转换机制的重要性 被引量:1

The importance of transformation mechanism between the barotropic and baroclinic enstrophy in the blocking process over Ural Mountains
下载PDF
导出
摘要 使用正斜压涡度拟能方程对一次乌拉尔山阻塞过程的研究表明 ,虽然正、斜压涡度拟能向阻塞区内的净输送、阻塞区域内正斜压涡度拟能的净生成以及 β效应是阻塞环流建立、维持和崩溃的基本能源 ,但正斜压涡度拟能相互转换机制则是阻塞过程得以形成的根本原因。如果没有正斜压涡度拟能相互转化机制 ,则阻塞环流不但不能形成 ,反而使大气的斜压性不断增强 ,正压性不断减弱。 The strengthening and weakening of the barotropic and baroclinic enstrophy are the significant features of the blocking process over Ural Mountains. Also the net transportation, net production and β effect of barotropic and baroclinic enstrophy are the energy source in the blocking process, but the transformation mechanism between barotropic and baroclinic enstrophy are the fundamental reason of the blocking process formation. Without this transformation mechanism, the blocking circulation cannot form.
作者 朱乾根
机构地区 南京气象学院
出处 《山东气象》 2002年第3期3-5,9,共4页 Journal of Shandong Meteorology
基金 国家自然科学基金 49975 0 1 5项目资助
关键词 正斜压涡度拟能 转换机制 净通量机制 净生成机制 barotropic and baroclinic enstrophy transformation mechanism net fluxing net production
  • 相关文献

参考文献5

  • 1陶诗言.阻塞破坏时期的东亚一次寒潮过程[J].气象学报,1957,28(1).
  • 2陈汉耀.1954年长江淮河流域洪水时期的环流特征[J].气象学报,1957,28(1).
  • 3Charney, J. G. and Straus, D. M. From- drag instability, multiple equilibria and propagating planetary waves in baroclinic, orographicatly forced, planetary wave systems. [J] J. Atmos. Sci. , 1980,37(6).
  • 4McWilliams,J. C. An application of equivalent modons to atmospheric blocking, Dyn[J]. Atmos. Oceans, 1980,5(1).
  • 5朱乾根,黄昌兴.正、斜压涡度拟能相互作用所激发的乌拉尔山阻塞过程研究[J].科学技术与工程,2002,2(3):17-19. 被引量:1

二级参考文献5

  • 1吴国雄,刘辉,陈飞,赵宇澄,卢莹.时变涡动输送和阻高形成──1980年夏中国的持续异常天气[J].气象学报,1994,52(3):308-320. 被引量:50
  • 2朱抱真.大地形和热源的动力控制与超长波活动关系的初步研究[J].气象学报,1964,34(3):285-298.
  • 3[1]Chamey J G, Devore J G. Multiple flow equilibria in the atmosphere and blocking. J Atmos Sci,1979;36:1205 - 1216
  • 4[3]Long R R. Solitary waves in the westeries. J Atmos Sci, 1964;21(2):197 - 200
  • 5[4]Patoine A, Warn T. The interaction of long quasi-stationary baroclinic waves with topography. J Atmos Sci, 1982;39(5):1018 -1025

共引文献23

同被引文献22

  • 1伍荣生.1984.论涡度拟能的变化[J].科学通报,22(9):1384-1386.
  • 2Holopainen E O, Oort A H. 1981. On the role of large scale transient ed- dies in the maintenance of the vorticity and enstrophy of the time- mean atmospheric flow [ J]. J Atmos Sci,38:270-280.
  • 3Hoskins B J, James I N, White G H. 1983. The shape, propagation and mean-flow interction of large scale weather system [ J ]. J Atmos Sci,40 : 1595-1612.
  • 4IPCC. 2001. Climate Change 2001 : The Scientific Basis [ M ]. Cam- bridge: Cambridge University Press.
  • 5IPCC. 2007. Climate Change 2007: The physical science basis [ M ]. Cambridge,United Kingdom and New York,NY,USA:Cambridge University Press :748-845.
  • 6Kalnay E, Kanamistu M, Kistler R, et al. 1996. NCEP/NCAR 40-year reanalysis project J]. Bull Amer Meteor Soc ,77 (3) :437-471.
  • 7Krishnamurti T N. 1961. The subtropical jet stream of winter[ J]. J Me- teor, 18:172-191.
  • 8Krishnamurti T N. 1979. Compendium of Meteorology, Vol. 2, Part 4: Tropical Meteorology, Rep 364 [ R ]. Geneva: World Meteorological Organization.
  • 9Laine A, Kageyama M, Braconnot P, et al. 2009. Impact of greenhouse gas concentration changes on surface energetics in IPSLCM4:Re- gional warming patterns, land-sea warming ratios, and glacial-inter- glacial differences [ J ]. J Climate,22:4621-4635.
  • 10Lau K M, Boyle J S. 1987. Tropical and extratropical forcing of the large-scale circulation : A diagnostic study [ J ]. Mon Wea Rev, 115 : 400-428.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部