摘要
对欧拉数、戴煦数与齿排列的关系进行研究,揭示了欧拉数与戴煦数都是一对相辅相成、难解难分的函数,比伯努利数与欧拉数的关系更进一步;在齿排列中赋予了戴煦数和欧拉数明确的组合意义,并使两者统一于安德烈数,安德烈数是欧拉数与戴煦数的复合,这一性质简单优美,是伯努利数所不具备的。
This paper reveals that Euler numbers and Dai Xu numbers are more relevant and inseparable function to each other when they are compared with Bernoulli numbers and Euler numbers.In gear permutation,it gives a combination meaning to Euler numbers and Dai Xu numbers.Andre numbers are a compound of Euler numbers and Dai Xu numbers,whose nature is simple and perfect and not possessed by Bernoulli numbers.
出处
《自然科学史研究》
CSCD
北大核心
2005年第1期53-59,共7页
Studies in The History of Natural Sciences
关键词
欧拉数
戴煦数
齿排列
安德烈数
Euler numbers,Dai Xu numbers,gear mutation,Andre numbers