期刊文献+

考虑耗散效应的金属杆受扰动后的非线性动力学现象分析 被引量:3

Nonlinear Complex Dynamic Phenomena of the Perturbed Metallic Bar Considering Dissipating Effect
下载PDF
导出
摘要  研究在周期外载荷作用及Neumann边界条件下,考虑Peierls_Nabarro效应的有限长一维金属杆的运动,以位移表达杆的控制方程,是受扰动的类sine_Gordon方程· 利用空间四阶精度,时间二阶精度的有限差分格式模拟系统的动力响应· 对于一定特征尺寸及物理性质的金属杆,研究了初始呼吸子及周期载荷幅值对杆动力行为的影响,结果显示了4种典型的动力行为:与空间位置无关的简谐运动、单波的简谐运动。 Considering Peierls-Nabarro effect, one-dimensional finite metallic bar subjected with periodic field was researched under Neumann boundary condition. Dynamics of this system was described with displacement by perturbed sine-Gordon type equation. Finite difference scheme with fourth-order central differences in space and second-order central differences in time was used to simulate dynamic responses of this system. For the metallic bar with specified sizes and physical features, effect of amplitude of external driving on dynamic behavior of the bar was investigated under initial 'breather' condition. Four kinds of typical dynamic behaviors are shown: x-independent simple harmonic motion; harmonic motion with single wave; quasi-periodic motion with single wave; temporal chaotic motion with single spatial mode. Poincaré map and power spectrum are used to determine dynamic features.
出处 《应用数学和力学》 CSCD 北大核心 2005年第2期130-136,共7页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10172063) 山西省青年科学基金资助项目(20011004)
关键词 sine-Gordon系统 NEUMANN边界条件 混沌 sine-Gordonsytem Neumannboundarycondition chaotic
  • 相关文献

参考文献6

  • 1Bishop A R, Flesch R, Forest M G, et al. Correlations between chaos in a perturbed sine-Gordon equation and a truncated model system[J]. SIAM J Mathematical Analysis, 1990,21(6): 1511-1536.
  • 2Bishop A R, Fesser K, Lomdahl P S. Influence of solitons in the initial state on chaos in the driven damped sine-Gordon system[J]. Physica D, 1983,7(2) :259-279.
  • 3Bishop A R, Forest M G, Mclaughlin D W, et al. A quasi-periodic route to chaos in a near-integrable PDE[J]. Physica D, 1986,23(2) :293-328.
  • 4Eilbeck J C, Lomdahl P S, Newell A C. Chaos in the inhomogeneously driven sine-Gordon equation[J]. Physics Letters A,1981,87( 1 ) : 1-4.
  • 5张年梅,杨桂通.非线性弹性梁中的混沌带现象[J].应用数学和力学,2003,24(5):450-454. 被引量:8
  • 6Shu X F, Yang G T. The influence of material properties on dynamic behavior of structures[ A]. In:Senoo M Ed. Proceedings of IMMM'97[C].Kamihama:Mie University Press, 1997, 279-284.

二级参考文献1

共引文献7

同被引文献10

  • 1Forinash K,Willis C R.Nonlinear response of the SG breather to an ac driver[J].Physica D,2001,149:95-106.
  • 2Laurent Nana,Timoléon C Kofané,Ernest Kaptouom.Subharmonic and homoclinic bifurcations in the driven and damped SG system[J].Physica D,1999,134:61-74.
  • 3Matsuda T.A variational analysis of the collision of solitary solutions[J].Lett Nuovo Cimento,1979,24(7):207-212.
  • 4Meyers M A,Chawla K K.Mechanical Metallurgy[M].New Jersey:Prentice Hall,Inc,1984.
  • 5SHU Xue-feng,YANG Gui-tong.The influence of material properties on dynamic behavior of structures[A].In:Senoo M,Ed.Proceedings of IMMM' 97[C].Kamihama:Mie University Press,1997,279-284.
  • 6Bishop A B,Lomdahl P S.Nonlinear dynamics in driven,damped sine-Gordon systems[J].Physica D,1986,18:54-66.
  • 7Cicogna G.A theoretical prediction of the threshold for chaos in a Josephson junction[J].Physics Letters A,1987,121 (8/9):403-406.
  • 8ZHANG Nian-mei,YANG Gui-tong.Solitary waves and chaos in nonlinear visco-elastic rod[J].European Journal of Mechanics A/Solids,2003,22(6):917-923.
  • 9Kivshar Y S,Malomed B A.Dynamics of solitons in nearly integrable systems[J].Rev Mod Phys,1989,61:763-916.
  • 10Quintero N R,Sánchez A.DC motion of ac driven SG solitons[J].Physics Letters A,1998,247:161-166.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部