摘要
利用Schmidt方法,研究了压电材料中两个平行不相等的可导通界面裂纹对简谐反平面剪切波的散射问题· 利用Fourier变换,使问题的求解转换为对两对以裂纹面张开位移为未知变量的对偶积分方程的求解· 数值计算结果表明,动态应力强度因子及电位移强度因子受裂纹的几何参数、入射波频率的影响· 在特殊情况下,与已有结果进行了比较分析· 同时。
The dynamic behavior of two unequal parallel permeable interface cracks in a piezoelectric layer bonded to two half-piezoelectric material planes subjected to harmonic anti-plane shear waves is investigated. By using the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations in which the unknown variables were the jumps of the displacements across the crack surfaces. Numerical results are presented graphically to show the effects of the geometric parameters, the frequency of the incident wave on the dynamic stress intensity factors and the electric displacement intensity factors. Especially, the present problem can be returned to static problem of two parallel permeable interface cracks. Compared with the solutions of impermeable crack surface condition, it is found that the electric displacement intensity factors for the permeable crack surface conditions are much smaller.
出处
《应用数学和力学》
EI
CSCD
北大核心
2005年第2期145-154,共10页
Applied Mathematics and Mechanics
基金
国家自然科学基金资助项目(10172030
50232030)
黑龙江省自然科学基金资助项目(A0301)
黑龙江省杰出青年基金资助项目