摘要
本文所讨论的广义Hammerstain型非线性奇异积分方程:(*)是以流体弹性力学和断裂力学的边值问题为背景。我们分别对k>0,k=0,k<0这三种情况研究了方程(*)的可解性,用Newton-Kantorovic方法和Banach不动点原理证明了方程(*)在不同条件下解的存在唯一性定理,从而推广了的工作。
The generalized Hammerstain nonlinear singular integral equation arising from the boundary value problems of fluid elastic mechanics and fracture mechanics:is studied in this paper. The solvability of equation for k>0, k = 0, k<0 respectively is studied and the existence and uniqueness of solutions of equationare proved under different conditions by using Newton-Kantorovic method and Ba-nach fixed point theorem. These results extend Γyceйнов's work.
出处
《数学进展》
CSCD
北大核心
1993年第3期252-262,共11页
Advances in Mathematics(China)
关键词
非线性
奇异积分方程
可解性定理
Hammerstain nonlinear singular integral equation
Cauchy kernel
Newton-Kantorovic method
Frechet derivative
Banach fixed point theorem