期刊文献+

关于随机padé逼近的存在性和收敛性

On the Existence and Convergence of Random Pads Approximants
下载PDF
导出
摘要 首次对随机Pade逼近进行了研究。考虑了随机形式幂级数 f(z,ω)=a_0ξ_0(ω)+a_iξ_i(ω)z+…(1)的Pade逼近。其中a_i(i=0,1,…)是全不为零的实数序列,ξ_i(ω)是独立的连续随机变量。 首先证明了(1)的任意Pade逼近的a.s.存在性。其次,考虑了一类形如 (2) 的随机准解析函数Pade逼近的a.s.依勒贝格测度收敛性。 The problem of random Pade approximants is a new one which nobody has investigated before. In this paper a formal power series(1)is considered where ai (i= 0,1,…) are arbitrary nonzero real numbers,ξ:(ω) are continuous random variables. At first, it is proved that there exists a.s. arbitrary Pade approximants of (1). Secondly, the author investigates some random quasianalytic functions in the following form(2)where ξn(ω) are complex random variable sequences, and it is proved that the [(N+J)/N] Pade approximants to (2) converges a.s. in measure within any bounded region of the complex plane as N approaches infinity.
作者 李家良
出处 《数学进展》 CSCD 北大核心 1993年第4期340-347,共8页 Advances in Mathematics(China)
关键词 随机Pade逼近 存在性 解析函数 C-determinant normal Pade table convergence a.s. in measure
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部