摘要
我们定义了(H,λ)求和法,它含有(N,p_n),(R_n~γ)和(V_(mn))求和法。讨论了函数f(x)∈C^r[-1,1](r∈N_0)以及f(x)∈W^rH^a(r∈N_0,0<a<1)的切比晓夫-富里埃级数的逼近阶。
The summability of(H,λ)which contains the summabilities of (N,Pn),(Rnτ) and (Vmn) is defined. The degree of approximation to a function f(x)∈Cτ[-1,1](T∈N。) by(H,λ) means and to a function f(x) ∈Wτ Hσ (τ∈N。, 0<α<1) by (c, β) means of its Tcheb-ycheff-Fourier series is discussed.
出处
《数学进展》
CSCD
北大核心
1993年第5期411-421,共11页
Advances in Mathematics(China)
关键词
求和法
逼近论
T-F级数
函数逼近
Tchebycheff-Fourier series
summability
approximation