摘要
该文提出了一种构造处处不连续,而且在任何区间内取到任一函数值c次的达布函数类的新方法,证明了该函数类的势为2^c(c为连续统势);还得到了处处不连续又不可测的达布函数类的势为2^c。
This paper presents a new method constructing the class of Darboux functions which are discontinuous everywhere and take on every function value c times in every interval. The cardinality of the class is proved to be 2c, where c denotes the cardinality of the continuum. A new result can be obtained, cardinality of the class of Darboux functions which are nonmeasurable and discontinous everywhere is 2c.
出处
《数学进展》
CSCD
北大核心
1993年第6期511-515,共5页
Advances in Mathematics(China)
基金
中国科学院数学研究所开放所的资助
关键词
达布函数
不可测
势
处处不连续
cardinality
Darboux function
nonmeasurable function