期刊文献+

基于价格随机波动率的衍生产品期权定价 被引量:5

Pricing of Derivatives Option with Stochastic Prices Volatility
下载PDF
导出
摘要 为了研究随机波动率对期权定价的影响,应用解偏微分方程与特征函数方法,建立了基于价格随机波动率的欧式买权定价模型.该模型允许基础资产价格的波动率与其收益率相关,并证得欧式买权的价格与基础资产价格过程的漂移项无关.在允许随机利率情况下,应用该模型进一步给出了债券期权和外汇期权的定价公式,结果表明它对期权定价有重要作用. In order to analyze the effects of stochastic on the option prices, a new technique based on partial differential equation and characteristic functions was used to establish the closed-form pricing formula of European option model. The model allows arbitrary correlation between volatility and spot-asset returns, and that the price of European option is independent of the drift of the asset price is proved. Furthermore, in the case that the stochastic interest rates are allowed, the pricing formulas of bond options and currency options can be further given by the model. The conclusion shows that stochastic volatility plays an important role in option pricing.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2005年第2期214-217,共4页 Journal of Xi'an Jiaotong University
基金 中国博士后基金资助项目(2004036158) 广东省教育厅人文社会科学研究基金资助项目(02SJC79002) 广东省哲学社会科学"十五"规划资助项目(03/04C2 13).
关键词 期权定价 随机波动率 风险中性概率 Cost benefit analysis Mathematical models Partial differential equations Probability Risks
  • 相关文献

参考文献9

  • 1Scott L O. Option pricing when the variance changes randomly: theory, estimation, and an application [J].Journal of Financial and Quantitative Analysis, 1987,22(2):419-438.
  • 2Wiggins J B. Option values under stochastic volatility[J]. Journal of Financial Economics, 1987, 15 (3).-351-372.
  • 3Renault E, Touzi N. Optional hedging and implied volatilities in a stochastic volatility model [J]. Mathematical Finance, 1996, 6(3) : 279-302.
  • 4Fouque J P. George P, Ronnie S K. Mean-reverting stochastic volatility [J]. International Journal of Theoretical and Applied Finance,2000, 3(1): 101-142.
  • 5Bruno D. Pricing with a smile [J]. Risk, 1994,7 (1) :18-20.
  • 6Derman E, Kani I. Riding on a smile[J]. Risk, 1994,7(2) : 32-39.
  • 7Wilmott P. The theory and practice of financial engineering [M]. Chichester, UK: Johe Wiley & Sons,1998. 299-304.
  • 8Derman E, Kani I, Chriss N. Stochastic implied trees:arbitrage pricing with stochastic term and strike structure of volatility [J]. International Journal of Theoretical and Applied Finance, 1998,10(1):7-22.
  • 9JackwerthJ C. Option-implied risk-neutral distributions and implied binomial trees: a literature review[J]. Journal of Derivatives, 2000,7(4) : 66-82.

同被引文献30

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部