摘要
研究Riemann流形的球面特征是一个颇有兴趣的问题,特别是考虑完备Riemann流形M在什么条件下与一球面等距.为此,Obata曾得到两个微分方程组,证明它们在M上非常数解的存在性等价于M与一个球面等距,其中一个方程组解的存在与共形向量场的存在有关.人们由此给出M在紧致情况下很多解的存在条件(如[3]).而另一个是下面的(也见[4]).定理A设M为n维完备、连通、单连通的Riemann流形。
We give certain conditions for a complete Riemannian manifold admitting a projective vector field to be isometric to a sphere.