期刊文献+

K 阶 Sikkema-Kantorovi算子的 L_P 逼近 被引量:2

L_p—APPROXIMATION BY SIKKEMA—KANTOROVIC OPERATORS OF ORDER K
下载PDF
导出
摘要 本文给出了 K 阶 Sikkema—Kantorovi(?)算子 LP 逼近的正反定理。文中用Ditzian—Totik 光滑模作为对函数光滑性的度量并利用了光滑模与 K—泛函的等价性。 In this paper,we proved direct and converse theorems for L_p—approxi-mation by so-called Sikkema—Kantorovic operators of order k which wasintroduced by Cao Jia Ding (曹家鼎) in [3].As an important tool for meas-uring the smootheness of a fanction we use the Ditzian-Totik modulus ofsmoothness and its equivalence to some approprate K—functionals.
作者 梅家明
出处 《数学杂志》 CSCD 北大核心 1993年第3期269-272,共4页 Journal of Mathematics
  • 相关文献

参考文献3

  • 1Zhou Dingxuan. Uniform approximation by some Durrmeyer operators[J] 1990,Approximation Theory and its Applications(2):87~100
  • 2Cao Jiading. On Sikkema-Kantorovi? polynomials of order K[J] 1989,Approximation Theory and its Applications(2):99~109
  • 3Josef Nagel. Kantorovi? operators of second order[J] 1983,Monatshefte für Mathematik(1):33~44

同被引文献10

  • 1吴嘎日迪.修正的Bernstein多项式算子在Orlicz空间中的整体逼近定理[J].内蒙古师大学报,1988,3:66-70.
  • 2Ding CaoJia.On sikkema-Kantorovic polynomials of order K[J].Approx Theory and Its Appl,1989,5(2):99~109.
  • 3Nagel J.Kantorovic operators of second order[J].Monatschefte Math,1993,91(1):33~41.
  • 4Totik V.An interpoation theorem and its applications to positive operators[J].Pacif J of Math,1984,111(2):447~481.
  • 5Erich Van Wickeren.Weak-type inequalities for Kantorovitch polynomials and related operators[J].Indag Math,1987,49(1):111~120.
  • 6Ding CaoJia.On Sikkema-Kantorovic polynomials of order K[J].Approx Theory and Its Appl,1989,5(2):99-109.
  • 7Wickeren.E.Van.Weak-type inequalities for Kantorovic polynomials and related operators[J].Indag.Math.1987.49(1):111-120.
  • 8吴雁,夏茂辉.Sikkema-Kantorovitch算子的L^p逼近[J].烟台大学学报(自然科学与工程版),1998,11(3):157-162. 被引量:5
  • 9马万.Orlicz空间中Kantorovi算子逼近等价定理[J].数学杂志,2000,20(2):145-150. 被引量:14
  • 10吴雁.K阶Sikkema-Kantorovitch算子L^p逼近的正逆定理[J].烟台大学学报(自然科学与工程版),2002,15(4):235-240. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部