期刊文献+

解线性代数方程组的PE_k方法 被引量:11

PE_k METHOD FOR SOLVING A SYSTEM OF LINEARALGEBRAIC EQUATIONS
原文传递
导出
摘要 1.序 言 1977年,William S.Helliwell提出了一种PE(Pseudo-Elimination)方法来解线性代数方程组 Ax=b,(1.1) In this paper, an iterative method PE_k, based on the PE method for solving systems of li-near algebraic equations, is proposed. If the parameter k is chosen to be the optimum value,the rate of convergence of PE_k is five or six times faster than that of the PE method. Someconvergence theorems of PE_k are obtained, which include the previous results about the PE me-thod and SBGS method as special cases.
出处 《数值计算与计算机应用》 CSCD 北大核心 1993年第2期146-156,共11页 Journal on Numerical Methods and Computer Applications
  • 相关文献

参考文献3

  • 1胡家赣,计算物理,1986年,3卷,4期,487页
  • 2胡家赣,J Comput Math,1984年,2卷,2期
  • 3胡家赣,计算数学,1982年,4卷,2期

同被引文献42

  • 1任水利,张凯院,叶正麟.解线性代数方程组的新型二次PE_k方法[J].高等学校计算数学学报,2006,28(2):176-184. 被引量:4
  • 2任水利,张凯院,叶正麟.块三对角线性代数方程组的一种迭代解法[J].昆明理工大学学报(理工版),2007,32(2):116-120. 被引量:4
  • 3BLOOR M I G,WILSON M J. Generating parameterizations of wing geometries using partial differential equations [J]. Computer Methods in Applied Mechanics and Engineering, 1997, 148:125-138.
  • 4EVANS D J. Direct methods of solution of partial differential equations with periodic boundary conditions [J]. Mathematics and Computer in Simulation, 1979, ⅩⅩⅠ: 270-275.
  • 5HELLIWELL W S. A collection of technical papers AIAA 3rd computational fluid dynamics [C]. America: American Institue of Aeronautics and Astronautics, 1977,125-129.
  • 6Helliwell W S. A Fast Implicit Iterative Numerical Method for Solving Multidimensional Partial Differential Equations.In:Blottner F G. A Collection of Technical Papers AIAA 3rd Computational Fluid Dynamics. American Institute of Aeronautics and Astronautics, 1977,125 ~ 129.
  • 7胡家赣,线性代数方程组的迭代解法,1991年
  • 8刘兴平,Chin J Numer Math Appl,1989年,11卷,1期,70页
  • 9胡家赣,J Comput Math,1987年,15卷,2期,95页
  • 10胡家赣,JCM,1984年,2卷,2期,122页

引证文献11

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部