期刊文献+

结合模糊C均值聚类和曲线演化的心脏MRI图像分割 被引量:12

Cardiac MRI Image Segmentation by Unifying Fuzzy C-Means Clustering and Curves Evolving
下载PDF
导出
摘要 提出了结合模糊C均值聚类和曲线演化的MRT图像分割算法。由于心脏的变形和血液的流动,MRI图像中出现了弱边界、局部梯度极大值区域、伪影等现象。分析了使用水平集方法分割此类图像时出现的问题,提出了两阶段分割算法:结合先验知识和直方图,对心脏MRI图像进行模糊C均值聚类,再根据聚类的结果定义窄带中像素点的速度函数,通过曲线演化获取左心室的粗边界;然后使用梯度向量流构造另一速度函数对边界进行细化。心脏MRI图像的分割实验证明了算法的有效性。 An MRI image segmentation algorithm is presented by unifying fuzzy C-means clustering and curves evolving. Due to cardiac deformation and blood flowing, weak edges, local gradient maximum regions and artifacts are found in the MRI images. The difficulties are analyzed when the level set method is applied to segment those MRI images. A two-stage algorithm is thus proposed: firstly, incorporating prior knowledge about cardiac MRI and image histogram, the fuzzy C-means clustering is applied and with the clustering results, and the velocity function of the pixels in the narrow band is constructed to search for the rough boundary of left ventricle; secondly, another velocity function based on Gradient Vector Flows (GVF) is designed to locate the edges accurately. The results of the experiments demonstrate the effectiveness of the segmentation algorithm.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第1期129-133,共5页 Journal of System Simulation
基金 香港特区政府研究资助局资助(CUHK/4180/01E CUHK1/00C)
关键词 曲线演化 模糊C均值聚类 水平集方法 梯度向量流 MRI图像分割 curves evolving fuzzy C-means clustering level set method Gradient Vector Flows MRI image segmentation
  • 相关文献

参考文献10

  • 1Malladi ,R., Sethian,J.A.Shape modeling with front propagating:a level set approach[J]. IEEE Trasacfion on Pattern Analysis and Machine Intelligence, 1995, 17(2): 158-175.
  • 2V Caselles, R Kimmel, G Sapiro. Geodesic active contours[J]. LJCV,1997, 22: 61-79.
  • 3Nikos Paragios, Rachid Detiche. Coupled geodesic active regions for image segmentation:A level set approach[A]. In Proceeding of 6^th Eur. Conf. on Computer Vision[C]. Dublin, 2000: 224-240.
  • 4Leventn,M.E.,Grimson,W.E.L.,Faugeras,O.Statistical shape influence in geodesic active contours[A]. In Proc. Conf. Computer Vision and Pattern Recognition[C] Hilton Head Island,June 2000,1.316-323.
  • 5Suri,J.S,Leaking prevention in fast level sets using fuzzy models:An application in MR brain[A]. In Proc. Int. Conf. Inform. Technol.Biomedicine[C]. Nov.2000. 220-226.
  • 6Osher, S.,Sethian,J.A.Fronts propagating with curvature dependent speed:algorithms based on the Hanilton-Jacobi formulation[J].Journal of Computational Physics, 1988,79:12-49.
  • 7Adalsteinsson,D.,Sethian,J.A. A fast level set method for propagating interfaces[J].Journal of Computational Physics,1995,118 (2): 269-277.
  • 8Xu C,Prince J L. Snakes,shapes and gradient vector flow[J]. IEEE Trans on Imaging Processing. 1998, 7(3):359-369.
  • 9Adalsteinsson,D.,Sethian,J.A.The fast construction of extension velocities in Level Set methods [J]. Journal of Computational Physics,1999,148(1): 2-22.
  • 10Peng,Dan-ping,Merriman,Barry et al.A PDE-based fast local level ser method[J]. Journal of Computational Physics, 1999,155(2): 410-438.

同被引文献227

引证文献12

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部