摘要
借助于黎曼流形的抛物性概念研究黎曼度量的共形形变问题, 证明了Gauss曲率小于某负常数的非紧完备2维黎曼流形其度量不可能共形形变到具有非负Gauss曲率的完备度量.
Conformal deformations of the Metrics on a Riemannian manifold are investigated by using parabolicity, and it is proved that if a complete noncompact 2-dimensional Riemannian manifold has Gauss curvature less than a negative constant, its metric can not be conformally deformed to a complete metric with nonnegative Gauss curvature.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2005年第1期34-36,共3页
Journal of Southwest China Normal University(Natural Science Edition)
关键词
完备黎曼流形
抛物性
GAUSS曲率
共形形变
complete Riemannian manifold
parabolicity
Gauss curvature
conformal deformation