期刊文献+

黎曼流形的抛物性与度量的共形形变 被引量:1

Parabolicity and Conformal Deformations of the Metrics on a Riemannian Manifold
下载PDF
导出
摘要 借助于黎曼流形的抛物性概念研究黎曼度量的共形形变问题, 证明了Gauss曲率小于某负常数的非紧完备2维黎曼流形其度量不可能共形形变到具有非负Gauss曲率的完备度量. Conformal deformations of the Metrics on a Riemannian manifold are investigated by using parabolicity, and it is proved that if a complete noncompact 2-dimensional Riemannian manifold has Gauss curvature less than a negative constant, its metric can not be conformally deformed to a complete metric with nonnegative Gauss curvature.
作者 张宗劳
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第1期34-36,共3页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 完备黎曼流形 抛物性 GAUSS曲率 共形形变 complete Riemannian manifold parabolicity Gauss curvature conformal deformation
  • 相关文献

参考文献6

  • 1张宗劳.CH流形上的方程△u-hu+fu^p=0与黎曼度量的共形形变[J].数学物理学报(A辑),2002,22(1):135-144. 被引量:4
  • 2Kazdan J.Prescribing the Curvature of a Riemannian Manifold[M].Providence:Amer Math Soc,1985.?A?A?A
  • 3Ni WM.On the Elliptic Equation △u+K(x)e^2u =0 and Conformal Metrics with Prescribed Gaussian Curvatures[J].Invent Math,1982,66:343-352.
  • 4Karp L.Subharmonic Functions on Real and Complex Manifolds[J].Math Z,1982,179:535 -554.
  • 5Greene R,Wu H.Function Theory on Manifolds Which Possess a Pole[M].Berlin:Springer-Verlag,1979.
  • 6Cheeger J,Ebin D.Comparison Theorem in Riemannian Geometry[M].Amsterdam:North-Holland Publishing Company,1975.

二级参考文献2

  • 1Ma Li. Conformal deformations on a noncompact Riemannian manifold[J] 1993,Mathematische Annalen(1):75~80
  • 2Wei-Ming Ni. On the elliptic equation Δu+K(x)e 2u =0 and conformal metrics with prescribed Gaussian curvatures[J] 1982,Inventiones Mathematicae(2):343~352

共引文献3

同被引文献11

  • 1LATORRE J M,ROMERO A. New Examples of Calabi-Bernstein Problems for Some Nonlinear Equations[J].Differ ential Geometry and its Applications,2001,(02):153-163.doi:10.1016/S0926-2245(01)00057-2.
  • 2CHENG S Y,YAU S T. Maximal Hypersurfaces in the Lorentz-Minkowskispace[J].Annuals of Mathematics,1976,(03):407-419.
  • 3ESTUDILLO F J M,ROMERO A. Generalized Maximal Surfaces in the Lorentz-Minkowski Space L3[J].Mathematical Proceedings of the Cambridge Philosophical Society,1992,(03):515-524.
  • 4KOBAYASHI O. Maximal Surfaces in the 3-Dimensional Minkowski Space L3[J].Tokyo Journal of Mathematics,1983,(02):297-309.
  • 5ALBUJER A L,AL(I)AS L J. Calabi-Bernstein Results for Maximal Surfaces in Lorentzian Product Spaces[J].Journal of Geometry and Physics,2009,(05):620-631.
  • 6ALBUJER A L,CAMARGO F E C,DE-LIMA H F. Complete Spacelike Hypersurfaces with Constant Mean Curvature inHn×R1[J].Journal of Mathematical Analysis and Applications,2010,(02):650-657.
  • 7ONEILL B. Semi-Riemannian Geometry with Applications to Relativity[M].London,UK:Academic Press,1982.
  • 8MARC T. Parabolicity of Manifolds[J].Siberian Advances in Mathematics,1999,(04):125-150.
  • 9OMORI H. Isometric Immersions of Riemannian Manifolds[J].Journal of the Mathematical Society of Japan,1967,(02):205-214.
  • 10YAU S T. Harmonic Functions on Complete Riemannian Manifolds[J].Communications on Pure and Applied Mathematics,1975,(02):201-228.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部