期刊文献+

改进的蚁群算法在2D HP模型中的应用 被引量:6

Application of Improved Ant Colony Optimization Algorithm to the 2D HP Model
下载PDF
导出
摘要 针对蛋白质二维格模型(2D HP)折叠问题提出了一种改进的蚁群算法(Ant Colony Optimization Al gorithm),在算法的搜索阶段采用了牵引移动(pull moves)的方法:首先按照一定规则移动一个或两个顶点的位置,然后将其他顶点沿着链依次向前移动两个位置,一旦达到一个新的有效构象则停止该移动.该方法的优点是大多数移动只需改变很少的顶点位置,使得改进后的蚁群算法具有较快的收敛速度.求解基准实例的结果表明,该算法在保证解的质量的前提下能大大缩短计算时间. An improved Ant Colony Optimization (ACO) is proposed for the 2-dimensional hydrophobic-polar (2D HP) protein folding problem, we modified the local search mechanism by using pull moves: First one or two vertices was moved by rule, then, pull the other vertices two spaces up the chain until a new valid configuration is reached. The advantage is that most moves displace few vertices. It can quicken the convergence rate. Our experiments show that our algorithm can observably decrease computing time with the same result of previous ACO algorithm.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2005年第1期33-38,共6页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金资助项目(30170214)
关键词 蛋白质折叠 格模型 蚁群算法 生物信息学 protein folding lattice model ant colony optimization (ACO) algorithm bioinformatics
  • 相关文献

参考文献17

  • 1Dorigo M, Maniezzo V, Colornl A. The Ant System:An Autocatalytic Optimizing Process[R]. Technical Report No. 91-016, haly,Milano:Dipartimento di Elettronica, Politecnico di Milano, 1991.
  • 2Dorigo M, Maniezzo V, Colorni A. The Ant System:Optimization by a Colony of Cooperating Agents[J].IEEE Transactions on Systems, Man, and Cybernetics-Part B, 1996,26( 1 ):29-41.
  • 3Dorigo M,Gambardella L M. Ant Colony System: A Cooperative Learning Approach to the Travelling Salesman Problem[J]. IEEE Trans on Evolutionary Computation, 1997,1 ( 1 ): 53-66.
  • 4Colorni A, Dorigo M, Maniezzo V, etal. Ant System for Job-Shop Scheduling[J]. JORBEL, 1994,34 ( 1 ) :39-53.
  • 5Costa D, Hertz A. Ants Can Colour Graphs[J].Journal of the Operational Research Society, 1997,48(3) :295-305.
  • 6Bullnheimer B, Hartl R F, Strauss C. Applying the Ant System to the Vehicle Routing Problem[A]. Voss S, Martello S, Osman I H,et al,eds. Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization[C]. Boston: Kluwer, 1998,109-120.
  • 7Alena Shmygelska, Holger H Hoos. An Improved Ant Colony Optimisation Algorithm for the 2D HP Protein Folding Problem [A]. Yang Xiang, Brahim Chaib-draa, eds. Canadian Conference on AI , Lecture Notes in Computer Science[C]. Berlin: Springer Verlag, 2003, 2671.
  • 8Shmygelska A, Hernandez R, HOOS H H. An Ant Colony Algorithm for the 2D HP Protein Folding Problem[A]. Marco Dorigo, Gianni Di Caro, Michael Sampels,eds. Ant Algorithms, Lecture Notes in Computer Science [C]. Berlin: Springer Verlag, 2002,2463.
  • 9Anfinsen C B, Haber E, White F H. The Kinetics of the Formation of Native Ribonuclease During Oxidation of the Reduced Polypetide Domain[J]. Proc Natl Acad Scl USA, 1961,47(9) : 1309-1314.
  • 10Backofen R. The Protein Structure Prediction Problem: A Constraint Optimization Approach using a New Lower Bound[J]. Constraints, 2001,6 : 223-255.

同被引文献48

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部