期刊文献+

用FCM聚类和非参数回归方法推断基因调控网络 被引量:1

Inference of Gene Regulatory Network Using FCM Clustering and Nonparametric Regression Algorithm
下载PDF
导出
摘要 采用FCM方法对基因表达的微阵列数据进行聚类分析,应用核回归和PP回归相结合的方法设计预报器,利用决定系数遴选父代基因集合.将这种新的组合设计方法的分析结果与相关文献的结果进行对比分析,得出了较好的推断结果;可以将这种组合方法运用于致病基因簇的搜寻. FMC clustering is used for gene expression data, a combination of kernel regression and projection pursuit regression introduced into the design of predictors, and coefficient of determination used as a criterion in selecting the target gene's parent sets. Comparisons between the results based on the proposed method and those in the literature indicate the advantage of the proposed algorithms. The combination-design methods are recommended in finding and analyzing the carcinogenic genes clusters of human cancer.
机构地区 上海大学理学院
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第1期84-89,共6页 Journal of Shanghai University:Natural Science Edition
基金 国家高技术研究发展计划 (86 3计划 )专项经费资助项目 (2 0 0 2AA2 3 40 2 1 )
关键词 基因调控网络 FCM聚类 核回归 PP回归 决定系数 gene regulatory networks FCM clustering kernel regression projection pursuit regression coefficient of determination
  • 相关文献

参考文献9

  • 1Shmulevich Llya, Dougherty Edward R, Kim Seungchan, et al. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks [ J ]. Bioinformatics,2002, 15:261-274.
  • 2Murphy K, Weiss Y. The factored frontier algorithm for approximate inference in DBNs [R]. UAI, 2001.378-385.
  • 3Tian T, Burrage K. Stochastic neural network models for gene regulatory networks [ A ]. Proceedings of the 2003 Congress on Evolutionary Computation [ C ]. IEEE Press,2003.162-169.
  • 4Kim Seungchan, Dougherty Edward R, Bittner Michael L, et al. General nonlinear framework for the analysis of gene interaction via multivariate expression arrays [J]. Journal of Biomedical Optics, 2000, 5(4) :411-424.
  • 5Zhou Xiaobo, Wang Xiaodong, Dougherty Edward R.Construction of genomic networks using mutual information clustering and reversible-jump Markov-chain-Monte-Carlo predictor design [ J ]. Signal Processing, 2003, 83 : 745-761.
  • 6Durra J C. A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters [J]. J Cybernet,1974, 3:32-54.
  • 7Bezdek J C. Pattern recognition with fuzzy objective function algorithms [M]. New York:Plenum Press, 1981.2-10.
  • 8Klir G J, Yuan B. Fuzzy sets and fuzzy logic: theory and applications [ M ]. Prentice Hall PTR, USA, 1995. 369-374.
  • 9Friedman J H. SMART users guide [ R ]. Laboratory for Computational Statistics, 1984.220-250.

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部