摘要
应用钴、镍金属并联电解法制备锂离子电池正极材料.电解反应时,调节流过钴、镍电极上的电流比值及控制合适的电流密度,可生成均匀的CoxNi1-x(OH)2前驱体.研究表明,该法简单且无污染.合成的LiCo0.3Ni0.7O2正极材料充放电的容量较高,循环稳定性也较好,其初始放电容量为163mAh/g,经过50次充放电循环后放电容量仍可保持140mAh/g.
A new electrolytic method was developed to prepare LiCo_(x)Ni_(1-x)O_2 as a cathode material of lithium-ion battery. Contrary to the traditional method, electrolytic method is a potential method with simple process to industrialization and no pollution. Metal cobalt and nickel were electrolysed in parallel to prepare the precursor of Co_( x )Ni_(1- x )(OH)_2.Different compositional precursors could be conveniently prepared by changing electrolytic current. The LiCo_(0.3)Ni_(0.7)O_2 cathode prepared by this method was found favorable charge-discharge and cycle properties. For the LiCo_(0.3)Ni_(0.7)O_(2 )cathode material, the discharge capacities in the 1st and 50th cycles were 163 mAh/g and 140 mAh/g with charge retention of 86%.
出处
《电化学》
CAS
CSCD
2004年第4期409-414,共6页
Journal of Electrochemistry
基金
国家重点基础研究发展计划 (2 0 0 2CB2 1 1 80 0 )资助