期刊文献+

用数值方法探讨射频电流驱动下Josephson结系统的稳定性 被引量:1

Exploration on stability of RF-current-driven Josephson junction systems by numerical method
下载PDF
导出
摘要 Josephson结用作参量放大器时出现的反常高的噪声起因于混沌运动.本文综合相平面法与数值方法对Josephson结中的混沌现象进行了研究,并据此初步探讨了Josephson结系统的稳定性. The abnormal noise rising in Josephson junction parametric amplifiers is due to chaos. Chaos occurring in Josephson junctions is investigated by phase-space and numerical methods. In addition, the stability of Josephson junction systems is explored.
出处 《天津工业大学学报》 CAS 2004年第6期83-85,共3页 Journal of Tiangong University
关键词 相平面法 数值方法 混沌 吸引子 稳定性 phase-space method numerical method chaos attractor stability
  • 相关文献

参考文献7

  • 1Huberman B A, Crutchfield J P, Packard N H. Noise phenomena in Josephson junctions[J]. Appl Phys Lett, 1980,37: 750-752.
  • 2Pedersen N F, Davidson A. Chaos and noise rise in Josephson junctions[J].Appl Phys Lett, 1981,39: 830-832.
  • 3Kautz R L. Chaotic states of rf-biased Josephson junctions[J].J Appl Phys, 1981,52: 6 241-6 246.
  • 4Yeh W J, Kao Y H. Intermittency in Josephson junctions[J].Appl Phys Lett, 1983,42: 299-301.
  • 5MacDonald A H.Study of the driven damped pendulum: Application to Josephson junctions and charge-density-wave systems[J]. Phys Rev B, 1983,27: 201-211.
  • 6吴锋民.标准信号置换法控制Mathieu方程的混沌[J].非线性动力学学报,1998,5(1):92-98. 被引量:1
  • 7王震宇,廖红印,周世平.rf-偏置约瑟夫森结的混沌控制以及热噪声的影响的研究[J].低温物理学报,2001,23(4):285-290. 被引量:3

二级参考文献22

  • 1吴锋民.欧拉动弯曲问题在参数激励下的丰富行为[J].自然杂志,1992,15(5):394-395. 被引量:4
  • 2吴锋民.欧拉动弯曲问题的分岔和混沌[J].非线性动力学学报,1994,1(3):267-270. 被引量:5
  • 3吴锋民,张存元,范竞藩.一类Mathieu对方程的分叉性和复杂性[J].杭州大学学报(自然科学版),1995,22(2):164-170. 被引量:5
  • 4陈予恕等.非线性Mathieu方程的亚谐分岔解及欧拉动弯曲问题[J].力学学报,1988,(6):522-532.
  • 5Ott E,Grebogi C,Yorke J A,Controlling Chaos,Phys.Rev lett,1990(64):1196-1199.
  • 6Huberman B A,Lumer E,Dynamics of Adaptive Systems,IEEE Trans Circuits and Systems,1990,37:547-549.
  • 7Lima B,Pettini M.Suppression of Chaos by Resonant Parametric Petturbations,Phys Rev A,1990,41:726-733.
  • 8Braiman Y,Goldhirsch I.Taming Chaotic Dynamies with Weak Periodic Perturbations.Phys Rev Lett,1991,66:2545-2548.
  • 9Pyragas K.Continous Control of Chaos by Self-controlling Feedback,Phys Lett A,1992,170:421-428.
  • 10Pecora L M,Carroll T L.Synchronization of chaotic system.Phys Rev Lett,1990(64):821-828.

共引文献2

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部