期刊文献+

基于光谱空间密度分析的边缘提取 被引量:1

Edge Extraction Based on Density Analysis in Spectral Space
下载PDF
导出
摘要 针对传统的边缘提取方法大部分不适应高光谱数据的特点 ,提出了基于光谱空间密度分析边缘提取的思想。在分组主分量变换提取第一主分量作为特征维的基础上 ,采用面向对象的二次判别边缘的方法 ,通过立体判决将光谱空间中低密度超椭球体集群视为真实边缘点集群。试验表明 ,此方法是合理可行的。 The density analysis of super dimensional spectral space for edge extraction is presented. On the basis of the first principle component after grouping PCA, the fundamental methods of object oriented two times edges determination is proposed. Every edge point called candidate detecting from each first component will perform classification in feature space as vectors. Edge feature points are distributed in the form of lower density hyperellipsoid in spectral space because they have class characteristics like common points of large areas. Real edge points are considered as those in lower density zones of spectral space.
作者 刘楠 舒宁
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2004年第12期1093-1096,共4页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目 (4 99710 5 5 )。
关键词 超维光谱空间 密度分析 高光谱影像 边缘提取 影像分类 super dimension of spectral space density analysis hyperspectral image edge extraction image classification
  • 相关文献

参考文献5

  • 1张晔,张钧萍.遥感超谱(Hyperspectral)图象处理技术[J].中国图象图形学报(A辑),2001,6(1):6-13. 被引量:11
  • 2Shu N. Edge Extraction from Multi Spectral Images and Density Analysis of Super Dimensional Spectral Space. SPIE,2001,4 550:63~66
  • 3苑玮琦,王建军,张宏勋.一种基于梯度极值的边缘检测算法[J].信息与控制,1997,26(2):117-120. 被引量:21
  • 4浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2000
  • 5姜小光,唐伶俐,王长耀,等.高光谱数据的光谱信息特点及面向对象的特征参数选择.见:童庆禧编.中国遥感奋进20年学术论文集.北京:金象出版社,2002

二级参考文献17

  • 1Jimenez L O, Landgrebe D A. Supervised classification in high- dimensional spece: Geometrical, statistical, and asymptotical properties of multivariate data. IEEE Trans. On System, Man, and Cybernetics-Part C: Applications and Reviews 1998 28(1):39-54.
  • 2Tu Te Ming, Chert Chin Hsing. A fast two stage elassification method for bigh dimensional remote sensing data. IEEE Trans.on Geoscienee and Remote Sensing, 1S98,36(1) :182-191.
  • 3Jia Xiuplng, Richards J A. Segmented principal componemts transformation for efficient hyperspeetral remote sensing image display and classification. IEEE Trans. On Geoscience and Remote Sensing, 1999,37(1) : 538-942.
  • 4Zhang Ye, DesaiMD, Zhang Junping et al. Adaptive subspace decomposition for hyperspectral data dimensionality reduction, In:International Conference on Image Processing (ICIP99'), Kobe, Japan,1999:326-329.
  • 5Benediktsson J A, Sveinsson J S, Arnason K. Classification and feature extraction of AVIRIS data. IEEE Trans. On Geoseience and Remote Sensing, 1995,33(5):1194-1205
  • 6Harsanyi J C, Chang Chein I. Hyperspectral image ctassification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans. On Geoscience and Remote Sensing, 1994,32(4) : 779-785.
  • 7Chang Chein-I, Zhao Xiao Li, Althouse M L G et al Least squares subspaee projection approach to mixed pixel classification for hyperspectral images. IEEE Trans. On Geoscience and Remote Sensing, 1998,36(3):898-912.
  • 8JimenezL O, Motell A M, Creus S. Classification of hyperdimensional data based on feature and decision fusion approaches using projection pursuit, Majority Voting, and Neural Networks. IEEE Trans. On Geoscienee and Remote Sensing, 1999,37(3) : 1360-1366.
  • 9Benediktsson J A, Kanellopulos I. Classification of multisource and hyperspectral data based on decision fusion. IEEE Trans. On Geoscience and Remote Sensing, 1999,37(3):1367-1377.
  • 10Hoffman R N, Johnson D W. Application of EOF's to multispectral imagery : Data compression and noise detection for AVIRIS. IEEE Trans. On Geoscience and Remote Sewing, 1994.32(1) :25-34.

共引文献30

同被引文献4

  • 1孙家抦,舒宁,关泽群.遥感原理方法和应用[M].北京:测绘出版社,1997
  • 2Ester M, Kriegel H P, Sander J, et al. A DensityBased Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]. 2nd Int Conf on Knowledge Discovery and Data Mining, Portland, OR,1996
  • 3Ankerst M, Breuning M. OPTICS: Ordering Points to Indentify the Clustering Structure [J]. SIGMOD99, Philadelphia, PA, 1999
  • 4Comaniciu D, Meer P. Mean Shift Analysis and Applications [C]. 7th International Conference on Computer Vision, Kerkyra, Greece, 1999

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部