期刊文献+

NiFe_2O_4基金属陶瓷耐腐蚀因素分析及腐蚀率预测 被引量:5

Corrosion Analysis and Corrosion Rates Prediction ofNiFe_2O_4 Cermet Inert Anodes
下载PDF
导出
摘要 采用灰关联分析方法解析了铝电解5%Ni NiFe2O4基金属陶瓷惰性阳极的电解腐蚀率与电解参数的关系,建立了预测惰性阳极腐蚀率的人工神经网络模型。研究结果表明:灰关联分析是一种新的惰性阳极腐蚀数据处理方法;根据灰关联度的计算,在很多电解参数中找出了影响惰性阳极腐蚀率的主要因素,即Al2O3质量浓度、电解温度、分子比、面积比和电流密度等,并指出了各因素对电极腐蚀的影响程度;对NiFe2O4基金属陶瓷惰性阳极电解腐蚀率的预测结果与实测值吻合,表明利用所建立的神经网络模型能有效地预测惰性阳极腐蚀率。 The corrosion rates of 5%Ni-NiFe_2O_4 inert anodes were investigated as a function of main operating parameters by grey relational analysis. The results show that grey relational analysis is a novel data process method and is used to rank the correlation extent of effect factors in the inert anode system. The analysis of practical data show that the prior factors causing corrosion are alumina concentration, bath temperature, cryolitic ratio, area ratio of cathode to anode, and current density in turn. Corrosion analyses are consistent with experimental results. An artificial neural network(ANN)-based solution methodology for modeling anode corrosion procesed from observed experimental values, and ANN model were developed by using the cited methodology for the prediction of the corrosion rate of inert anode in aluminium electrolysis. The experimental result shows that ANN model holds promise to be an effective and efficient tool for the construction of analytical models associated with corrosion process of inert anodes in cryolite-based melts.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第6期896-901,共6页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(50204014) 国家重点基础研究发展规划项目(G1999064903) 国家高技术研究发展计划项目(2001AA335013)
关键词 铝电解 惰性阳极 腐蚀 灰关联分析 人工神经网络 aluminum electrolysis inert anode corrosion grey relational analysis artificial neural network
  • 相关文献

参考文献21

  • 1MALINOV S, SHAW. Software Products for Modeling and Simulation in Materials Science[J]. Computational Materials Science, 2003, 28:179 - 198.
  • 2VENKATESH V, RACK H J. A Neural Network Approach to Elevated Temperature Creep-fatigue Life Prediction[J]. International Journal of Fatigue, 1999, 21(3):225 -234.
  • 3PLEUNE T T, CHOPRA O K. Using Artificial Neural Networks to Predict the Fatigue Life of Carbon and Low-alloy Steels[J]. Nuclear Engineering and Design , 2000, 197(1 -2):1-12.
  • 4沈清 胡德文 时春.神经网络应用技术[M].北京:国防科技大学出版社,1993..
  • 5CAI Jian-ping, COTTIS R A, LYON S B. Phenomenological Modelling of Atmospheric Corrosion Using an Artificial Neural Network[J]. Corrosion Science, 1999, 41(10) : 2001 - 2030.
  • 6PINTOS S, QUEIPO N V, de RINCON O T, et al. Artificial Neural Network Modeling of Atmospheric Corrosion in the MICAT Project[J]. Corrosion Science, 2000, 42(1):35-52.
  • 7LICZNAR P, NEARING M A. Artificial Neural Networks of Soil Erosion and Runoff Prediction at the Plot Scale [J].Catena, 2003, 51(2) :89 - 114.
  • 8毛旭辉,甘复兴,汪的华.人工神经网络在腐蚀与防护领域的应用[J].材料保护,2001,34(9):55-56. 被引量:6
  • 9蔡建平,柯伟.应用人工神经网络预测碳钢、低合金钢的大气腐蚀[J].中国腐蚀与防护学报,1997,17(4):303-306. 被引量:28
  • 10马小彦,栾艳冰,屈祖玉,李长荣.神经网络在金属大气腐蚀率预测中的应用[J].北京科技大学学报,2001,23(2):123-126. 被引量:10

二级参考文献44

共引文献191

同被引文献161

引证文献5

二级引证文献164

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部