期刊文献+

潜堤上波浪分裂现象的数值分析 被引量:2

Numerical analysis of wave decomposition over submerged breakwaters
原文传递
导出
摘要 为研究潜堤附近水波变形现象,建立了一个模拟该现象的数值方法。基于势流理论的基本方程,其中入射波浪的生成基于域内源造波方法,无反射边界采用海绵层消波加辐射条件的处理方法。垂向采用σ坐标变换,可保证自由表面和底面边界的"精确"满足,同时便于有限差分法的应用。使用该模型对二个已有的物理模型实验进行计算,比较了长波和短波越过潜堤时波浪变形特性的异同。计算所得潜堤前后不同位置处的波面与实验结果吻合较好。结果表明:该模型能很好地模拟坡度不同的潜堤前坡上高次谐波的产生和堤后波浪分裂现象,可用于求解二维强非线性势波问题。 A numerical method based on potential theory was developed to simulate nonlinear wave transformation over a submerged breakwater. The incident wave was generated using a source wave-generating method with the outgoing wave dissipated by sponge layers and transmitted by the radiation boundary condition. The σ coordinate transformation was used in the vertical so that the free surface and bottom boundary conditions could be precisely implemented. The finite difference method was used to solve the governing equations and the boundary conditions. The model was verified by comparing the calculated wave profiles with available experimental data. The similarities and differences of wave evolution for long waves and short waves were also investigated. The results show that the model can simulate the higher harmonics generated on the front slope and the wave decomposition behind the breakwater to analyze the strongly nonlinear wave characteristics.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第12期1656-1659,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家杰出青年科学基金资助项目(50025935)
关键词 波浪分裂 波浪变形 势流理论 σ坐标变换 wave decomposition wave transformation potential wave theory σ coordinate transformation
  • 相关文献

参考文献7

  • 1Madsen P A,Murry O R.A new form of the Boussinesq equations with improved linear dispersion characteristics [J].Coastal Eng,1991,15: 371-388.
  • 2Madsen P A,Soresen O R.A new form of the Boussinesq equations with improved linear dispersion characteristics,Part 2,A slowly-varying bathymetry [J].Coastal Eng,1992,18: 183-204.
  • 3Nwogu O.Alternative form of Boussinesq equations for nearshore wave propagation [J].J of Waterway,Port,Coastal and Ocean Eng,1993,119(6): 618-638.
  • 4Beji S,Battjes J A.Numerical simulation of nonlinear wave propagation over a bar [J].Coastal Eng,1994,23: 1-16.
  • 5Ohyama T,Kioka W,Tada A.Applicability of numerical models to nonlinear dispersive waves [J].Coastal Eng,1995,24: 297-313.
  • 6李本霞,俞聿修,张宁川.数值二维随机波浪水槽的建立和应用[J].海洋通报,2004,23(5):1-9. 被引量:7
  • 7Kowalik Z,Murty T S.Numerical Modeling of Ocean Dynamics [M].Singapore: World Scientific,1993.

二级参考文献10

  • 1Li B, Christoper A, Fleming. A three dimensional multigrid model for fully nonlinear water waves[J]. Coastal Engineering,1997, 30: 235-258.
  • 2Ito K, Katsui H et al. Non-reflected multidirectional wave maker theory and experiments of verification[A]. Proceedings of 25th Conference on Coastal Engineering[C], 1996: 443-456.
  • 3Troch P, Rouck J D. Development of two-dimensional numerical wave flume for wave interaction with rubble mound breakwaters[A]. Proceedings of 26th Conference on Coastal Engineering[C], 1998: 1638-1649.
  • 4BrorscnM, LarscnJ. Source Generation of nonlinear gravity waves with boundary integral equation method[J]. Coastal Engineering, 1987, 11: 93-113.
  • 5Ohyama T. Development of a numerical wave tank for analysis of nonlinear and irregular wave field[J]. Fluid Dynamics Research, 199 1,8:231-251.
  • 6I wata K, Kawasaki K, Kim D. Breaking limit, breaking and post-breaking wave deformation due to submerged structures[A]. Proceedings of 25th Conference on Coastal Engineering[C], 1996:2338-2351.
  • 7Wei G, Kirbu J T, Sinha A. Generation of waves in Bouss-mesq models in using a source function method[J]. Coastal Engineering, 1999, 36: 271-299.
  • 8Kowalik Z, Murty T S. Numerical Modeling of Ocean Dynamics[M]. World Scientific, Singapore, 1993.
  • 9Troch P, Rouck J. Development of two-dimensional numerical wave flume for wave interaction with rubble mound breakwaters [A]. Proceedings of 26th Conference on Coastal Engineering[C], 1998: 1638-1649.
  • 10刘海青,赵子丹.数值波浪水槽的建立与验证[J].水动力学研究与进展(A辑),1999,14(1):8-15. 被引量:16

共引文献6

同被引文献21

  • 1Park J C, Uno Y, Matsuo H, et al. Reproduction of fully nonlinear multi-directional waves by a 3D viscous numerical wave tank [C]//11th ISOPE. Stavanger, Norway, 2001.
  • 2Malarkey J, Davies A G. Modeling wave-current interactions in rough turbulent bottom boundary layers [J]. Ocean Eng, 1998, 25: 119-141.
  • 3Perlin A, Kit E. Apparent roughness in wave-current flow: implication for coastal studies [J]. Hydraulic Eng, 2002, 128(8) : 729 - 741.
  • 4SHI John Z, WANG Yun. The vertical structure of combined wave-current flow [J]. O::ean Eng, 2008, 35: 174- 181.
  • 5Dingenmans M W, Van Kester J A Th M, Radder A C, et al. The effect of the CL-vortex force in 3D wave-current interaction [C]//Proc 25th ICCE Orlando, 1996: 4821 - 4832.
  • 6Van Rijn L C. Data Base: sand concentration profiles and sand transport for currents and/or waves [R]. Netherlands, Delft University of Technology, Delft H. ydraulics Report H1148-04/05, 1991.
  • 7Kemp P H, Simons R R. The interaction between waves and a turbulent current: Waves propagating with the current [J]. J Fluid Mech, 1982, 116:227 - 250.
  • 8吴乘胜,朱德祥,顾民.数值波浪水池及顶浪中船舶水动力计算[J].船舶力学,2008,12(2):168-179. 被引量:37
  • 9董志,詹杰民.基于VOF方法的数值波浪水槽以及造波、消波方法研究[J].水动力学研究与进展(A辑),2009,24(1):15-21. 被引量:96
  • 10陈丽芬,宁德志,滕斌,宋伟华.潜堤上波流传播的完全非线性数值模拟[J].力学学报,2011,43(5):834-843. 被引量:6

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部