摘要
用活动标架法从不同方面证明并推广了文[2]的结果:(1)若Mn(n≥2)是n+1维仿射空间An+1中非退化的仿射超曲面,则2S共变对称(或R·S=0),当且仅当M是仿射球;(2)若Mn(n≥2)是An+1中非退化的仿射起曲面,则K共变对称当且仅当M是仿射球;若K和K都共变对称,则M是仿球,且J=0和仿射度量G是Einstein度量.
Using the mathod of Moving Frames,this paper has proved the following theorems: (1)Let Mn (u≥2) be a nondegenerate affine hypersurface in the affine spare An+1, then 2S is covariant-Symmetric (orR. S=0) if and only if M is an affine hypersphere; (2) Let Mn(n≥2) be a nondegenerate affine hypersurfacein An+1,then K is covarant-Symmetric if and only if M is an affine hypersphere; If K and K are both covariant-Symmetric, then M is an affine hypersphere with J=0 and its affine metric G is an Einstein metric.
出处
《数学研究》
CSCD
1997年第4期387-396,共10页
Journal of Mathematical Study