摘要
考虑拟线性抛物型变分不等式:u∈Ka.e.,〈Au′,v-u〉∫Ωai(x,u,u)(v-u)xidx+∫Ωa(x,u,u)(v-u)dx≥0a.e.t,v∈K,这里K为闭凸集,A为非1—1,可能退缩的线性算子.在ai(x,u,p),a(x,u,p)关于p,u具有多项式增长的假设下,得到了正则解的存在性和唯一性.特别是,当A=I时,我们便得到文[10]的结果.
We consider quasilinear parabolic variational inequalities of the formu∈K a.e.,〈Au′,v-u〉+∫Ωai(x,u,u)(v-u)xidx+∫Ωa(x,u,u)(v-u)dx≥0a.e. t,v∈K,where A is not 1-1 and may vanish, K be closed and convex set. We obtain the existence, uniqueness and regularity under the assumption of ai(x,u,p) and a(x,u,p) with polynomial growth for u and p by means of the approximation and penalization method.
出处
《工科数学》
1997年第2期13-15,共3页
Journal of Mathematics For Technology
关键词
拟线性
变分不等式
抛物型
多项式
Quasilinearity, variational inequalities of parabolic type.