摘要
介绍一种多维富里叶变换域中的波动微分方程的算术解法 .该方法能够导出已知的波方程解 ,如无限平面波、Bessel波束、局域波和非衍射的 X波 .同时 ,还将基于该方法导出波动微分方程一族新的解 ,它们具有有限带宽、理论上非衍射的特性 .该族解在医学超声、激光和电磁能量的传输等方面有潜在的应用前景 .
Investigates a suitable algebraic method for the solution to the wave differential equation in multidimensional Fourier Transform Domain, which leads to known wave constructions, such as the infinite plane wave, Bessel beam, localized waves and non\|diffracting X waves; presents a new family of solutions to the homogeneous scalar wave equation, which is band\|limited and theoretically non\|diffracting. The characteristics of the wave are investigated. This new family of waves has potential application in medical ultrasound, laser, electromagnetic energy transmission and so on.
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2001年第3期328-331,346,共5页
Journal of Zhejiang University:Engineering Science
基金
国家自然科学基金资助项目 (3980 0 0 37)
关键词
匀质波方程
非衍射
多维傅立叶变换
波解
homogeneous wave equation
non\|diffracting
multidimensional fourier transform
wave solution