摘要
A new class of second order accuracy semidiscrete difference schemes is presented for the two-dimensional nonlinear scalar hyperbolic conservation laws. It is based on flux splitting, piecewise linear cell-averaged reconstruction and upwind property in the spatial discretization. By using TVD Runge-Kutta time discretization method, the full discrete scheme is obtained and its MmB property is proved. The extension to the two-dimensionalnonlinear hyperbolic conservation law systems is straightforward by using component-wise manner. The main advantage is simple: no Riemann problem is solved, and so field-by-field decomposition is avoided and the complicated computation is reduced. Numerical results of two-dimensional Euler equations of compressible gas dynamics verify the accuracy and robustness of the method.
A new class of second order accuracy semidiscrete difference schemes is presented for the two-dimensional nonlinear scalar hyperbolic conservation laws. It is based on flux splitting, piecewise linear cell-averaged reconstruction and upwind property in the spatial discretization. By using TVD Runge-Kutta time discretization method, the full discrete scheme is obtained and its MmB property is proved. The extension to the two-dimensional nonlinear hyperbolic conservation law systems is straightforward by using component-wise manner. The main advantage is simple: no Riemann problem is solved, and so field-by-field decomposition is avoided and the complicated computation is reduced. Numerical results of two-dimensional Euler equations of compressible gas dynamics verify the accuracy and robustness of the method.
基金
航空科学基金(01A52003,02A52004)资助项目~~