期刊文献+

基于“SOM脸”的选择性单训练样本人脸识别 被引量:1

Finding Important Sub-Areas for Face Recognition from Single Training Image Per Person
下载PDF
导出
摘要 基于“SOM脸”计算模型提出一种新的人脸局部区域重要程度度量方法 ,并用于进行选择性单训练样本人脸识别。从机器人脸识别的角度 ,并未预先人为设定任何重要区域 ,而是通过学习来自动发现这些对机器而言相对重要的人脸区域 ,即包含类信息相对丰富的区域 ,并将其进行可视化。实验结果表明 ,在利用了人脸局部区域重要程度信息后 ,识别算法的性能和效率均得到提高 ;特别是仅选择人脸图像中若干部分重要的区域用于识别时 ,在提高识别效率的同时 ,识别性能未见明显下降。 Most subspace methods for the face recognition, such as linear discriminant analysis, discriminant eigenfeatures and fisherface cannot work in the situation of only one training image available per person, while the eigenface technique suffers a great performance drop. A novel method is used to automatically select some important local areas of a face image for face recogn ition with single training image per person. The SOM output space is studied fro m a novel view, where some enlightening ideas from the automatic text analysis f ield are introduced into the face recognition to evaluate the weights of differe nt local areas of face images. The extracted weight information is then used to select some important local facial features for the recognition. Experiments on both the FERET and ORL face database show that the proposed method is more effic ient than its non-weighted counterpart while keeping the recognition accuracy a cceptable. Moreover, the experiment points out that the most important local are a to recognition maybe not those common supposed local areas, such as ear, nose or mouse.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2005年第1期44-47,共4页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金 (60 2 71 0 1 7)资助项目 江苏省自然科学基金 (BK2 0 0 2 0 92 )资助项目 高等学校骨干教师资助计划 江苏省"青蓝"工程基金资助
关键词 人脸识别 单训练样本人脸识别 自组织神经网络 face recognition single training image per person sel f-organizing map
  • 相关文献

参考文献8

  • 1Zhao W, Chellappa R, Phillips P J, et al. Face recognition: a literature survey[J].ACM Computing Survey, December Issue, 2003. 399-458.
  • 2Brunelli R, Poggio T. Face recognition: features versus templates[J]. IEEE Trans PAMI, 1993,15(10):1042-1062.
  • 3Kohonen T. Self-organizing map[M]. 2nd Edition.Springer-Verlag, 1997.
  • 4Tan X, Chen S, Zhou Z H,et al. Robust face recognition from a single training image per person with kernel-based SOM-face[A]. Proceedings of the 1st International Symposium on Neural Networks(ISNN'04[C]. Dalian, China, LNCS 3173, 2004.858-863.
  • 5Pentland A, Moghaddam B, Starner T. View-based and modular eigenspaces for face recognition [A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C]. Seattle, WA,1994.84-91.
  • 6Martinez A M. Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2002, 25(6):748-763.
  • 7Grossman D A, Frieder O. Information retrieval: algorithms and heuristics [M]. Kluwer Academic Publishers, 1998.
  • 8Phillips P J, Wechsler H, Huang J, et al. The FERET database and evaluation procedure for face recognition algorithms[J]. Image and Vision Computing, 1998,16(5):295-306.

同被引文献8

引证文献1

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部