期刊文献+

多阵元液体压力激波发生器设计与声场数值模拟 被引量:3

Design of Multi-Element Shock Wave Generator and Sound Field Numerical Simulation
下载PDF
导出
摘要 设计了一种多阵元液体压力激波发生器 ,它由多个压电陶瓷换能器组成 ,每个换能器经激励产生脉冲超声波 ,通过球形几何聚焦后 ,在聚焦区域形成高能、瞬时压力激波。文中用阻抗分析仪和高频扫描激光测振系统对单元换能器进行了基本性能的测试 ,在此基础上 ,对单元换能器的声场、激波发生器的声场进行了数值模拟 ,其结果与声场实测数据基本吻合。该激波发生器具有聚焦效果好、能量可控及结构简单等优点 。 Pressure processing with the shock wave in liquid is a b rand-new green manufacturing technique which provides good perspectives in man y fields. A high-energy shock wave generator based on focus of the pulsed ultra sonic wave is the key equipment for the technique. This paper deals with a shock wave generator constituting of a certain number of transducers. In each transdu cer, piezoelectric ceramic piece under stimulation is used to produce the pulsed ultrasonic wave. All pulsed ultrasonic waves from the transducers are geometric ally focused, and the shock wave with high energy forms in the focal region. Th e properties of a transducer of the shock wave generator are tested with impedan ce analyzer and laser interferometry measurements. Then the acoustic fields of a transducer and the shock wave generator are numerically simulated with MATLAB, which is analogous to the experiment data. The generator has many advantages: go od focusing capability, controllable energy and simple structure, thus meeting t he needs of composite material drilling and metal surface hardening.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2005年第1期87-91,共5页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金 (5 0 3 0 5 0 1 1 )资助项目 江苏省自然科学基金 (BK2 0 0 3 0 90 )资助项目 航空科学基金(0 4H5 2 0 5 8)资助项目
关键词 聚焦 激波 换能器 声场 focusing shock wave transducer acoustic field
  • 相关文献

参考文献10

  • 1布利茨.超声技术及其应用[M].北京:海洋出版社,1992.44-45.
  • 2汪炜,刘正埙,谷安.液体压力激波加工技术研究[J].南京航空航天大学学报,2003,35(5):474-479. 被引量:4
  • 3霍彦明,李国伟,陈亚珠.超声阵列换能器设计及声场模拟[J].声学技术,1999,18(4):168-172. 被引量:10
  • 4戴启军,周秦武,卞正中,吴艳萍.超声治疗换能器的声场分析[J].压电与声光,2001,23(6):433-436. 被引量:4
  • 5Buizza A, Dell'aquila T, Giribona P, et al. The performance of different pressure pulse generators for extracorporeal lithotripsy: a comparison based on commercial lithotripters for kidney stones[J].Ultra-sound in Med & Biol, 1995,21(2):259-272.
  • 6Delius M. Minimal static excess pressure minimizes the effect of extracorporeal shock waves on cells and reduces it on gallstones [J]. Ultrasound in Med & Biol, 1997, 23(4):611-617.
  • 7Zhu Songlin, Dreyer T, Liebler M. Reduction of tissue injury in shock-wave lithotripsy by using an acoustic diode[J]. Ultrasound in Med & Biol, 2004,30(5):675-682.
  • 8Sferruzza J P, Birer A, Cathigno D. Generation of very high pressure pulses at the surface of a sandwiched piezoelectric material[J]. Ultrasonics, 2000,38:965-968.
  • 9Cathignol D, Birer A, Nachff S, et al. Electronic beam steering of shock waves [J]. Ultrasound in Med & Boi1,1995,21:365-377.
  • 10Wallace K D. Characterization of the nonlinear propagation of diffracting finite amplitude ultrasonic fields[D]. Saint Louis, MO, the Graduate School of Arts and Sciences of Washington University, 2001.

二级参考文献18

  • 1刘正埙 李奉珠.新型超声探头及新型脉冲电源[P].国家发明专利,88109995.3.1988.
  • 2姚福生.关于先进制造技术的再思考[J].中国机械工程学会会讯,2002,56(8):1-4.
  • 3李忠强 王鸿樟.球壳辐射器和相控球面阵的声场[J].声学技术,1986,5(3):51-55.
  • 4高全臣 刘殿书.岩石爆破测试原理与技术[M].北京:煤炭工业出版社,1995..
  • 5泽尔道维奇 莱依捷尔.激波和高温流体动力学现象物理学[M](下册)[M].北京:科学出版社,1985..
  • 6Lamb G I.Elements of solution theory[M].New York : John Wiley & Sons Inc,1980..
  • 7刘正埙 李奉珠.新型超声探头及新型脉冲电源[P].国家发明专利,88109995.3.1988.
  • 8Zhuang Shiming. Shock wave propogation in periodically layered compositesr[D]. Pasadena, Califorlia, Califorlia Tnstitute of Technology, 2002.
  • 9Ch Chaussy. Extracorporeal shock wave lithotripsy[M]. Munich: Published by Karger, 1982.
  • 10Wang Zhibiao. High intensity focused ultrasound from China[J]. China: Now Medical Devices, 2001,1(1) :22-27.

共引文献14

同被引文献24

  • 1梅媚,张力新,王玮,田锡惠,万柏坤.自聚焦多元辐射器超声热场的计算机模拟与实验研究[J].压电与声光,2004,26(4):325-327. 被引量:3
  • 2唐勇军,王振龙,胡富强,赵万生.平板式超声振子振动模态与谐响应有限元分析[J].压电与声光,2006,28(4):486-488. 被引量:7
  • 3Swamy K M,Keil F J.Ultrasonic power measurement in the milliwatt region by the radiation force float method [J].Ultrasonic Sonochemistry,2002,9(6):305-310.
  • 4Hekkenberg R T,Beissner K,Zeqiri B,et al.Validated ultrasonic power measurements up to 20 W[J].Ultrasound in Medicine & Biology,2001,27(3):427-438.
  • 5Sutton Yvonne,Shaw Adam,Zeqiri Bajram.Measurement of ultrasonic power using an acoustically absorbing well[J].Ultrasound in Medicine & Biology,2003,29(10):1507-1513.
  • 6Lunt M J,Duck F A.Ultrasonic power balances-effect of a coupling window on the power measured from physiotherapy ultrasound units[J].Ultrasound in Medicine & Biology,2001,27(8):1127-1132.
  • 7Chan H L W,Chiang K S,Price D C.Use of a fiber-optic hydrophone in measuring acoustic parameters of high power hyperthermia transducers[J].Phys Med Biol,1989,34(11):1609-1622.
  • 8Fay Burkhard,Rinker Michael.The thermoacoustic effect and its use in ultrasonic power determination [J].Ultrasonics,1996,34(2):563-566.
  • 9Hodnett Mark,Zeqiri Bajram.A strategy for the development and standardization of high power/cavitating ultrasonic fields:review of high power field measurement techniques[J].Ultrasonics Sonochemistry,1997,4(4):273-288.
  • 10Der Ho Wu,Wen Tung Chien,Chih Jen Yang. Coupled-field analysis of piezoelectric beam actuator using FEM[J]. Sensor and actuators,2005:171- 176

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部