期刊文献+

用能量优化法选取细分网格顶点

Determining Vertices of Subdivision Meshes Based on Energy Optimization
下载PDF
导出
摘要 分析了混合曲面初始细分网格的特点 ,将网格线进行分类。在这一基础上 ,利用曲面光顺的网格能量法 ,给出了计算网格顶点的优化模型。针对优化模型的特征 ,优先计算网格中的关键点 ,并把优化模型转化为线性方程组求解。这个计算网格顶点的方法实现了初始细分网格中顶点选取的自动化。实验表明 ,用文中方法选出的顶点能使混合曲面具有良好的光顺性 ,且有较高的计算效率。 The subdivision method is the very simple m et hod to blend parameter patches. However, it is still a problem how to make progr ams automatically calculate vertices of the initial subdivision mesh of a blendi ng surface. This paper analyses properties of the mesh and classifies mesh curve s. Based on it, an optimization model is presented by fairing of the mesh. Aimin g at characteristics of the model, key vertices of the mesh are firstly calculat ed and the model is converted into a linear system. The approach calculating mes h vertices realize automatization-determining vertices of the initial mesh. Exp eriments show that the obtained blending surfaces have good fairness and the app roach is very efficient.
作者 刘浩 廖文和
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2005年第1期92-96,共5页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家"8 63"高技术研究发展计划 (2 0 0 2 AA41 1 0 3 0 )资助项目
关键词 曲面 混合 能量优化 细分 surface blending energy optimization subdivision
  • 相关文献

参考文献7

  • 1I.i Guiqing, Li Hua. Blending parametric patches with subdivision surfaces [J]. Journal Computer Science & Technology, 2002,17(4) :498-506.
  • 2Vida H, Matin R R, Varady T. A survey of blending methods that use parametric surfaces[J]. Computer Aided Design, 1994,16(5):341-365.
  • 3Cheng J. Blending quadric surfaces via base curve method [J]. Mathematics-Mechanization Research,2002,21 (3) : 15-22.
  • 4Levin A. Filling an N-sided hole using combined subdivision schemes[A]. Albert Cohen (eds.). Proceedings of Curves & Surface [C]. Saint-Malo (France) : Vanderbilt University Press, 1999. 221-228.
  • 5Hwang Weichung, Chuang Junghong. N-sided hole filling and vertex blending using subdivision surfaces[J]. Journal of Information Science and Engineering, 2003,19(6) :745-763.
  • 6Sederberg T, Zheng J, Swell D, et al. Non-uniform recursive subdivision surfaces [A]. SIGGRAPH'98 Proceedings[C].New York : ACM Press, 1998. 387-394.
  • 7Zorin D N. Stationary subdivision and multiresolution surface representation [D]. California: California Institute of Technology, 1998.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部