期刊文献+

二维多介质流动问题的界面处理方法 被引量:4

Interface Treating Method for 2-D Multi-Medium Flow
下载PDF
导出
摘要 就二维可压缩多介质流动问题的数值模拟 ,给出了一种新的界面处理方法。通过在界面处构造 Riemann问题 ,利用 Riemann问题的解分别定义界面两边流体的边界条件 ,由于 Riemann问题的解准确地描述了界面处流体的流动状态 ,因此得到了更加准确的界面边界条件。本文将由 Riemann问题的解得到的界面速度外推到整个流场 ,重新定义速度场 ,避免了由于速度的大梯度变化而导致的 Level-Set等值线相互交错 ,因而得到了更加精确的界面位置。利用该方法对水下激波与柱型气泡相互作用问题进行数值模拟 ,结果表明该方法能准确地捕捉各种物理现象。 A new interface treating method is used for 2-D multi - medium flow. The Riemann problems are constructed on the interface and solved to define the boundary conditions for fluid on both sides of the interface, respec tively. As Riemann problem solvers describe the fluid states reasonably, a more accurate interface boundary condition is obtained. In order to overcome the diff iculties associated with the severe bunching of level set contours due to the la rge flow velocity gradient, an extension velocity field is constructed by the co mputation of level set function. The new method is used to simulate the underwat er shock-bubble interaction problem. Results show that the method can correctly capture the physics phenomenon.
作者 王春武 赵宁
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2005年第1期114-116,共3页 Journal of Nanjing University of Aeronautics & Astronautics
基金 航空科学基金 (0 1 A5 2 0 0 3 )资助项目 南京航空航天大学校青年基金 (S0 1 3 0 -0 81 )资助项目
关键词 RIEMANN问题 多介质流动 界面 边界条件 激波 Riemann problem multi-medium flow interface boundar y condition shock wave
  • 相关文献

参考文献6

  • 1Fedkiw R P, Aslam T, Merriman B, et al. A nonoscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method)[J].Comp Phys. 1999,152:457-492.
  • 2Liu T G, Khoo B C, Yeo K S. Ghost fluid method for strong shock impacting on material interface[J]. J Comput Phys, 2003,199 : 651- 681.
  • 3Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes [J]. J Comput Phys, 1996,126:202-228.
  • 4Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes[J]. J Comput Phys,1988,77:439-471.
  • 5Toro E F. Riemann solvers and numerical method for fluid dynamics: a practical introduction [M].Berlin: Springer-Verlag, 1997.
  • 6Ball G J, Howell B P, Leighton T G, et al. Shockinduced collapse of a cylindrical air cavity in water : a free-Lagrange simulation [J]. Shock Waves, 2000,10:265-276.

同被引文献18

  • 1王春武,赵宁.基于求解Riemann问题的界面处理方法[J].计算物理,2005,22(4):306-310. 被引量:6
  • 2张学莹,赵宁,朱君.多流体界面不稳定性的守恒和非守恒高精度数值模拟方法[J].爆炸与冲击,2006,26(1):65-70. 被引量:2
  • 3封建湖,蔡力,谢文贤,王振海.求解无粘可压Euler方程组的虚拟流方法[J].计算力学学报,2006,23(4):496-501. 被引量:1
  • 4Bukiet B G. Understanding curved detonation waves[C]//Proceedings of the 10th International Detonation Symposium. Boston, 1993:19-26.
  • 5Bdzil J B, Stewart D S, Jackson T L. Program burn algorithms based on detonation shock dynamies: Discrete approximations of detonation flows with discontinuous front models[J] Journal of Computational Physics, 2001,174 (2) :870-902.
  • 6Aslam T D, Bdzil J B, Stewar D S. Level set methods applied to modeling detonation shock dynamics[J]. Journal of Computational Physics, 1996,126(2) :390-409.
  • 7Barth T J, Sethian J A. Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains [J]. Journal of Computational Physics, 1998,145(1):1-40.
  • 8Adalsteinsson D, Sethian J A. The fast construction of extension velocities in level set methods[J]. Journal of Computational Physics, 1999,148 (1) : 2-22.
  • 9Glimm J. Tracking of interfaces for fluid flow.. Accurate methods for piecewise smooth problems, transonic, shock, and multidimensional flows[J]. Advances in Scientific Computing, 1982:259-287.
  • 10Osher S, Sethian J A. Fronts propagating with curvature dependent speed.. Algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computional Physics, 1988,79 : 12-49.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部