摘要
在四川大学学报(自然科学版)2003年第3期"关于有限域Fp2上的原根"一文中,霍家佳等给出了一个从有限域Fp的原根出发求Fp2的原根的算法,这个算法共含三大步.在本文中,在不改变霍文算法整体框架(即三大步)的前提下,作者利用关于原根的基本性质改进了这个算法的三大步,特别利用一个已知的关于原根的充要条件改进了这算法的第三步.改进后的算法三大步运算量分别是原算法三大步运算量的1/4或有数量级的减少不等.最后给出一个算例来具体体现改进后的算法的运算量的减少程度.
Huo and Zhang presented in a recent paper ('About the Primitive Root of Finite Field F_(p^2)', Journal of Sichuan University (Natural Science Edition), Vo1.40, No.3, (2003), pp.447-452) an algorithm for finding primitive roots of a finite field F_(p^2). The algorithm contains three main steps. In this paper, the author uses some basic properties of primitive roots to improve the three main steps, especially uses a well-known sufficient and necessary condition on primitive roots to improve the third main step. The arithmetic labor of the improved three main steps is a quarter of or magnitude-order less than that of the original three main steps. Then the author gives an example to show the difference between the arithmetic labor of both algorithms.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2005年第1期23-26,共4页
Journal of Sichuan University(Natural Science Edition)
基金
国家自然科学基金(10071001)
安徽省自然科学基金(01046103)
安徽省教育厅自然科学基金(2002KJ131)
关键词
有限域
原根
算法分析
运算量
finite fields
primitive roots
algorithm analysis
arithmetic labor