期刊文献+

关于有限域F_p^2上的原根求法的注记 被引量:4

Notes on an Algorithm for Finding Primitive Roots of Finite Field F_p^2
下载PDF
导出
摘要 在四川大学学报(自然科学版)2003年第3期"关于有限域Fp2上的原根"一文中,霍家佳等给出了一个从有限域Fp的原根出发求Fp2的原根的算法,这个算法共含三大步.在本文中,在不改变霍文算法整体框架(即三大步)的前提下,作者利用关于原根的基本性质改进了这个算法的三大步,特别利用一个已知的关于原根的充要条件改进了这算法的第三步.改进后的算法三大步运算量分别是原算法三大步运算量的1/4或有数量级的减少不等.最后给出一个算例来具体体现改进后的算法的运算量的减少程度. Huo and Zhang presented in a recent paper ('About the Primitive Root of Finite Field F_(p^2)', Journal of Sichuan University (Natural Science Edition), Vo1.40, No.3, (2003), pp.447-452) an algorithm for finding primitive roots of a finite field F_(p^2). The algorithm contains three main steps. In this paper, the author uses some basic properties of primitive roots to improve the three main steps, especially uses a well-known sufficient and necessary condition on primitive roots to improve the third main step. The arithmetic labor of the improved three main steps is a quarter of or magnitude-order less than that of the original three main steps. Then the author gives an example to show the difference between the arithmetic labor of both algorithms.
作者 孙翠芳
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第1期23-26,共4页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(10071001) 安徽省自然科学基金(01046103) 安徽省教育厅自然科学基金(2002KJ131)
关键词 有限域 原根 算法分析 运算量 finite fields primitive roots algorithm analysis arithmetic labor
  • 相关文献

参考文献7

  • 1张振祥,张振祥.关于矩阵乘法的一个改进算法的时间复杂度[J].Journal of Mathematical Research and Exposition,1999,19(4):716-718. 被引量:4
  • 2霍家佳,张起帆.关于有限域F_(p^2)上的原根[J].四川大学学报(自然科学版),2003,40(3):447-452. 被引量:4
  • 3Zhang Zhen-xiang. Finding finite B2-sequences with large m - am^1/2[J]. Mathematics of Computation, 1994, 63:403 -414.?A
  • 4Cohen H. A course in computational algebraic number theory (GTM 138)[M]. Berlin:Springer-Verlag, 1996.
  • 5Rosen K H. Elementary number theory and its applications[M]. Massachusetts:Addison Wesley, 1984.
  • 6Zhang Zhen-xiang. Using Lucas sequences to factor large integers near group orders[J]. The Fibonacci Quarterly, 2001, 39(3) :228 - 237.
  • 7Zhang Zhen-xiang. Finding strong pseudoprimes to several bases[J]. Mathematics of Computation, 2001, 70(234) :863 -872.

二级参考文献15

共引文献6

同被引文献20

  • 1廖群英.有限域F_q^n上原根的充分必要条件[J].四川师范大学学报(自然科学版),2005,28(2):134-137. 被引量:3
  • 2[2]Rudolf Lidl,Harald Niederreter.Finite Fields[M].Addisor-Wesley,Publishing Company,1983.
  • 3[4]H.Cohen.A course in computational algebraic number theory(GTM 138)[M].Berlin:Springer-Verlag,1996.
  • 4[1]Henri Cohen,A Course in Computational Algebraic Number Theory,Springer-Verlag Berlin Heidelberg,1993:8-12.
  • 5[2]Rudolf Lidl & Harald Niederreiter,Finite Fields,Addison-Wesley Publishing Company,1983:66-69,455-456.
  • 6lindstrom B. An inequality for B2-sequences[J]. J. Combin. Theory, 1969,6 : 211-212.
  • 7Erdos P. and Turan P. On a problem of Sidon in additive number theory and on some related problems [J]. J. London. Math. Soc. ,1941,16:212-215.
  • 8Singer J. A theorem in finite projective gemoetry and some applications to number theory[J]. Trans. Amer. Math. Soc. ,1938,43:377-385.
  • 9Guy R. K. Unsolved Problem in Number Theory[M]. Seoond edition. New York: Springer-Verlag, 1994.
  • 10Zhang Zhenxiang. Finding finite B2-sequences with large m-am^1/2 [J]. Mathematics of Computation, 1994,63,403-414.

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部