摘要
设G是一个n阶3-连通图,本文证明了:若对G中任意两个不相邻的顶点u和v使得1≤|N(u)∩N(v)|≤α_(uv),蕴含max{d(u),d(v)}≥(n+1)/2,则G是Hamilton连通的。
Let G be a 3-connected graph of order n. This paper proves that if for any two nonadjacent vertices u and v,1≤|N(u)∩N(v)|≤α_(uv) implies max{d(u),d(v)}≥1/2(n+ 1), then G is Hamiltonian connected graph.
关键词
铪密顿
连通图
独立集
Fan型条件
Hamilton connected graphs
independent sets
Fan type condition