期刊文献+

MC-空间内的不动点定理

Fixed point theorems in MC-spaces
下载PDF
导出
摘要 用较弱的强制条件,在非紧的MC-空间上建立了不动点定理.将一些已知的不动点定理推广到MC-空间. Some fixed point theorems with weaker coercive conditions in MC-spaces are proved. These theorems include some known fixed point theorems.
作者 王彤
出处 《重庆交通学院学报》 2005年第4期167-170,共4页 Journal of Chongqing Jiaotong University
关键词 MC—空间 不动点 紧内部 MC-spaces fixed point compact interior
  • 引文网络
  • 相关文献

参考文献6

  • 1丁协平,朴忠烈.G-凸空间内新的聚合不动点定理及应用[J].应用数学和力学,2002,23(11):1101-1112. 被引量:5
  • 2Tarafdar E. A fixed point theorem and equilibrium point of an abstract economy [J]. J Math Econom,1991,20(2):211-218.
  • 3Tarafdar E. Fixed point theorems in H-spaces and equilibrium point of abstract economies[J]. J Austral Math Soc Ser A, 1992,53(2):252-260.
  • 4Park S. Continuous selection theorems in generalized convex spaces[J]. Numer Funct Anal Optimize , 1999 ,20(5/6):567-583.
  • 5Llinares J .V. Unified treatment of the problem of existence of maximal elements in binary relations: a characterization[J]. J Math Econom,1998, 29: 285-302.
  • 6Ding X. P. Coincidence theorems in topological spaces and their applications [J]. Appl Math Lett, 1999,12(7): 99-105.

二级参考文献27

  • 1Tarafdar E. A fixed point theorem and equilibrium point of an abstract economy[J]. J Math Econom,1991,20(2):211-218.
  • 2LAN Kun-Quan, Webb J. New fixed point theorems for a family of mappings and applications to problems on sets with convex sections[J]. Proc Amer Math Soc,1998,126(4):1127-1132.
  • 3Ansari Q H, Yao J C. A fixed point theorem and its applications to a system of variational inequalities[J]. Bull Austral Math Soc,1999,59(2):433-442.
  • 4Singh S P, Tarafdar E, Watson B. A generalized fixed point theorem and equilibrium point of an abstract economy[J]. J Computat Appl Math,2000,113(1/2):65-71.
  • 5Tarafdar E. Fixed point theorems in H-spaces and equilibrium point of abstract economies[J]. J Austral Math Soc Ser A,1992,53(2):252-260.
  • 6CHANG Shi-sheng, Lee B S, Cho Y J, et al. On the generalized quasi-variational inequality problems[J]. J Math Anal Appl,1996,203(3):686-711.
  • 7LIN Lai-jiu, Park S. On some generalized quasi-equilibrium problems[J]. J Math Anal Appl,1998,224(1):167-181.
  • 8Patk S. Continuous selection theorems in generalized convex spaces[J]. Numer Funct Anal Optimiz,1999,20(5/6):567-583.
  • 9DING Xie-ping. New H-KKM theorems and their applications to geometric property, coincidence theorems, minimax inequality and maximal elements[J]. Indian J Pure Appl Math,1995,26(1):1-19.
  • 10DING Xie-ping. Gerenalized variational inequalities and equilibrium problems in generalized convex spaces[J]. Computera Math Applic,1999,38(7/8):180-197.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部