期刊文献+

弹性问题的自适应数值解析研究 被引量:2

Study on adaptive numerical resolution for elastic problems
下载PDF
导出
摘要 传统思维中,用边界元法求解弹性问题时根据不同的精度要求需反复划分单元网格并分析计算结果。针对以上过程存在的弊端,本文提出一种H-R自适应单元网格划分方法,在程序中自动生成新的自适应数据文件,这就节省了大量的前处理和后处理工作;另外,自适应过程的判别采用了一种新的自适应误差分析方法,即以连续误差分析作为局部误差分析和以迭代误差分析作为整体误差分析相结合的误差分析方法,从而大大提高了边界元解的计算精度。 In traditional thinking, when the elastic problems are solved, we need to repeatedly plot element grids and analyze com- puting results according to diverse precision requirement. Against the malpractice exists in the above process, a new H-R adaptive method to plot element grids is proposed, which is carried out in the program by automatically creating new adaptive data files. Thena great dealof fore-disposaland post-disposal canbesaved. Atthesame time, anew adaptive error analysis method is adopted in the adaptive process, namely continuum error analysis acts as the local error analysis and iterative erroranalysis acts as the whole error analysis, which greatly improves the computing precision of boundary element solution.
作者 于春肖
机构地区 燕山大学理学院
出处 《燕山大学学报》 CAS 2005年第1期17-21,共5页 Journal of Yanshan University
基金 河北省教育厅自然科学研究项目(No.2003116)
关键词 自适应 数据文件 网格划分 自动生成 精度要求 过程 节省 连续 数值解析 迭代 H-R adaptive BEM grids plot adaptive error analysis
  • 相关文献

参考文献4

  • 1汪新,邢延,赵志业.h-层状自适应边界元方法的算法[J].计算力学学报,2000,17(2):201-206. 被引量:1
  • 2金朝嵩.自适应边界元法的后验误差估计[J].重庆建筑大学学报,2000,22(6):16-19. 被引量:3
  • 3S-I Umetani. Adaptive Boundary Element Methods in Elastostatics [M]. Computational Mechanics Publications Southampton Uk and Boston USA, 1988.
  • 4Chen Yiming, Yu Chunxiao, Liu Deyi, et al.. The adaptive boundary element method for contact problem [A]. Yao Zhenhan, M H Aliabadi.Boundary Element Techniques [C].Beijing:Tsinghua University Press & Springer-Verlag, 2002, 199-206.

二级参考文献3

共引文献2

同被引文献18

  • 1郭嗣琮.模糊数比较与排序的结构元方法[J].系统工程理论与实践,2009,29(3):106-111. 被引量:35
  • 2余德浩.自适应边界元法的数学理论[M].北京:科学出版社,1993:347-358.
  • 3ERATH C, FERRAZ-LEITE S, FUNKEN S, et al. Energy norm based a posteriori error estimation for boundary element methods in two dimensions [ J ]. Appl Numer Math, 2009, 59 ( 11 ) : 2713-2734.
  • 4FERNANDEZ J R, HILD P. A posteriori error analysis for the normal compliance problem[ J]. Appl Numer Math, 2010, 60(1-2) : 64-73.
  • 5CHEN Zejun, XIAO Hong, YANG Xia. Error analysis and novel near-field preconditioning techniques for Taylor series multipole-BEM [ J ]. Eng Anal Boundary Elements, 2010, 34(2) : 173-181.
  • 6KITA E, KAMIYA N. Error estimation and adaptive mesh refinement in boundary element method: an overview[J]. Eng Anal Boundary Elements, 2001, 25 (7): 479-495.
  • 7LEE C C. Fuzzy logic in control systems : fuzzy logic controller[ J ]. IEEE Trans Systems, Man & Cybernetics, 1990, 20 (2) : 419-435.
  • 8BOUJI M, ARKADAN A A, ERICSEN T. Fuzzy inference system for the characterization of SRM drives under normal and fault conditions [ J ]. IEEE Trans Magn, 2001, 37(5) : 3745-3748.
  • 9HIYAMA T, MIYAZAKI K, SATOH H. A fuzzy logic excitation system for stability enhancement of power systems with multi-mode oscillations[ J]. IEEE Trans Energy Conversion, 1996, 11 (2) : 449-454.
  • 10SATSIOS K J, LABRIDIS D P, DOKOPOULOS P S. An artificial intelligence system for a complex electromagnetic field problem: part I: finite element calculation and fuzzy logic development[ J]. IEEE Trans Magn, 1999, 35 (1) : 516-522.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部