期刊文献+

Bayesian网的独立性推广模型

The Extension of the Bayesian Network Based on Independence
下载PDF
导出
摘要 本文提出了Bayesian网的独立性推广模型。Bayesian网能够表示变量之间概率形响关系与条件独立性,但不能表示因果独立性。虽然Noisy OR模型能够较好地表示变量之间的因果独立性,但该模型又因只能表示因果独立性而具有很大的局限性。本文提出的独立性推广模型解决了Bayesian网因果独立性表示能力不足的问题,扩展了Bayesian网与Noisy OR模型的表示范围,同时简化了Bayesian网的条件概率表,并且新模型更能够反映变量之间的概率影响关系。实验结果表明了该模型的实用性。 The Bayesian can express the conditionally independence conveniently,but in appliactions it can't handle causally independence easily. The Noisy OR model can express causally independence well,but the limitation of the Noisy OR model blocks the widely use of itself. In this paper,we present the extension of the Bayesian Network based on independence. Our new model generalizes the Bayesian Networks to handle causally independence properly,and simplifies the conditionally probability table. Experimental results show the availability of our new model.
出处 《计算机科学》 CSCD 北大核心 2005年第2期182-184,223,共4页 Computer Science
基金 安徽省自然科学基金(No.04-03042207)
关键词 表示 推广模型 变量 条件独立性 条件概率 简化 扩展 BAYESIAN网 地表 实用性 Bayesian networks Noisy OR model Conditionally independence Causally independence
  • 相关文献

参考文献6

  • 1Santos E,Shimony S E. Deterministic Approximation of Marginal Probabilities in Bayes Nets. IEEE Transactions on Systems,Man,and Cybernetics-Part A: System and Humans, 1998,28 (4):377~393.?A
  • 2Friedman N,Getoor L,Koller D,et al. Learning Probabilistic Relational Models. In: Proc. of the 16th Intl. Joint Conf. on Artificial Intelligence (IJCAI),Stockholm,Sweden,1999.
  • 3Heckerman D,Breese J. Causal Independence for Probability Assessment and Inference Using Bayesian Networks:[Technical Report MSR-TR-94-08]. Microsoft Research,1994.
  • 4Neapolitan R E. Learning Bayesian Networks. Prentice Hall,Prentice Hall ,Upper Saddle River, NJ, 2003.
  • 5Cooper G. Probabilistic inference using belief networks is NPhard. Artificial Intelligence, 1990,42 : 393 ~405.?A
  • 6Dagum P, Luby M. Aproximate probabilistic inference in Bayesian networks in NP hard. Artificial Intelligence,1993,60:141~153?A.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部