期刊文献+

软件系统层次的数据挖掘方法 被引量:2

A Data Mining Method on Software System
下载PDF
导出
摘要 论文在软件数据中挖掘聚类模式的研究基础上,进一步提出了在软件层次上的数据挖据方法。对于解决软件工程中项目代价的估算和评测具有重要的参考价值。首先收集不同类型软件数据,接着根据Halstead软件科学从它们中间抽取不同的特征,以此来标识不同的软件;然后将这些软件归为不同的类别,对于同一类中的软件可以认为它们具有相似的软件代价或相似的结构,可以用于病毒特征检测和预测,对于在不同类中的软件可以发现二者存在差异的决定“相异因素”;最后给出了对5414个实际软件系统挖掘的实验结果。结果表明这种软件层次的数据挖掘方法是可行而有效的。 This paper brings forward a data mining method on software system on the basis of the former clustering data mining software data. This way is valuable for reference to solve the estimation of project cost in software engi- neering. Firstly,collect all kinds of different software data; the following thing we have done is drawing different fea- tures from these data according to the Halstead software science,which are used to identify different softwares; then, classify the data to different classes,to the softwares in the same class,we regard them as the same software cost or similar structures,which can be used to check or pretest the virus features,to the softwares in different classes,we try to find the 'essential different factors' among them; finally,we give the experiment results of 5414 actual software systems. The results show that this kind of data mining based on software data is feasible and effective.
出处 《计算机科学》 CSCD 北大核心 2005年第2期202-205,共4页 Computer Science
基金 澳大利亚ARC基金 国家自然科学基金(60075016)
关键词 软件系统 数据挖掘 软件工程 病毒特征 聚类 评测 层次 实际 不同类型 论文 Software system Data mining Clustering Knowledge representation Deviation degree
  • 相关文献

参考文献10

  • 1Paulk M C. Capability Maturity Model Version1. 1 [J]. IEEE Software,10 4,July 1993.?A
  • 2Boehm B. Software Engineering Economics[J]. Englewood Cliffs,NJ, Prentice-Hall, 1981.
  • 3Zhang C Q,Zhang S C. Association Rule Mining Models and Algorithms[M]. Springer-Verlag,Berlin Heidelberg,2002.
  • 4Zhang S C,Zhang C Q. Discovering Causality in Large Databases [J]. Applied Artificial Intelligence, 2002.
  • 5Feldman R,Hirsh R. Finding Associations in Collections of text.Machine Learning and Data Mining: Methods and Applications [M]. John Wiley Sons, 1998. 223~240.
  • 6Salton G. Automatic Text Processing[M]. Addison-Wesley,1989.
  • 7Za O R,Li Z N,Chiang J Y,Chee S. Multimedia-miner:A System Prototype for Multimedia Date Mining[C]. ACM-SIGMOD Conf.On Management of Data,1998. 581~583.
  • 8Han J,Dong G,Yin Y. Efficient Mining of Partial Periodic Patterns in Time Series Database[C]. In: proc. ACM-SIGMOD Int.Conf. Management of Data,1997. 553~556.
  • 9Bettini C, Wang X S, Jajodia S. Mining Temporal Relationships with Multiple Granularities in Time Sequences[J]. Data Engineering Bulletin, 1998,21: 32~38.
  • 10Martin T,McClure C. Software Maintenance :The Problem and Its Solutions[M]. Prentice-Hall,Inc. ,1993.

同被引文献19

  • 1刘云,温晓霓,赵玮.硬-软件系统冗余结构最优化研究[J].西安电子科技大学学报,2005,32(2):304-306. 被引量:4
  • 2董云影,张运杰,畅春玲.改进的遗传模糊聚类算法[J].模糊系统与数学,2005,19(2):128-133. 被引量:16
  • 3苏绍勇,潘金贵.数据挖掘在软件维护中的应用[J].计算机科学,2005,32(10):245-248. 被引量:3
  • 4Han JW, Kambr M.Data mining concepts and techniques[M]. Beijing:Higher Education Press,2001:145-176.
  • 5David Binkley.Source code analysis:A road map[C].Future of Software Engineering,2007:104-119.
  • 6Antonellis P, Antoniou D,Kanellopoulos Y, et al.A data mining methodology for evaluating maintainability according to ISO/ IEC-9126 software engineering-product quality standard [C]. Special Session on System Quality and Maintainability,Organized in Conjunction with the 11th European Conference on Software Maintenance and Reengineering,2007.
  • 7Yiannis Kanellopoulos, Christos Tjortjis. Data mining source code to facilitate program comprehension:Experiments on clustering data retrieved from C++ programs[C].Proc IEEE 12th Int'l Workshop Program Comprehension, IEEE Comp Soc Press, 2004:214-223.
  • 8Dimitris Rousidis, Christos Tjortjis. Clustering data retrieved from Java source code to support software maintenance:A case study[C].Proc IEEE 9th European Conf Software Maintenance and Reengineering,2005:276-279.
  • 9Yiannis Kanellopoulos, Thimios Dimopulos. Mining source code elements for comprehending object-oriented systems and evaluating their maintainability[J].SIGKDD Explorations,2006,8(1):33-40.
  • 10Girolami M.Mercer kernel based clustering in feature space[J]. IEEE Transactions on Neural Network,2002,13 (3):780-784.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部