期刊文献+

非线性时滞系统的一种新型稳定模糊控制方案

New kind of stable fuzzy control for nonlinear time delay system
下载PDF
导出
摘要 针对非线性时滞系统,基于模糊动态模型,采用分段Lyapunov函数法,设计出一种新型稳定模糊控制方案,克服了采用公共Lyapunov函数法的并行分配补偿法中需求解公共正定矩阵的困难。新方法只要求一系列正定矩阵满足一系列Lyapunov不等式即可,进一步扩大了解的存在性,减小了保守性。采用线性矩阵不等式法,避免了采用公共Lyapunov函数法中繁琐的Riccati方程求解。 A new of stable fuzzy control scheme for nonlinear time-delay system is designed based on the piecewise Lyapunov function. The difficulty in solving a common positive matrix with the parallel distributed compensation method adopting common Lyapunov function can be overcome. In the new method it is only required that some positive matrices satisfy corrcesponding Lyapunov inequalities, the probability of solution is enlarged and the conservation is further reduced. With linear matrix inequality method, the solution to Riccati equation in common Lyapunov function is not needed any more.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2004年第12期1867-1870,共4页 Systems Engineering and Electronics
关键词 非线性系统 模糊动态模型 线性矩阵不等式 时滞系统 nonlinear system T-S model linear matrix inequality time-delay system
  • 相关文献

参考文献12

  • 1Han Ho Choi, Myung Jin Chung. Memoryless stabilization of uncertain dynamic systems with time-varying delayed states and controls[J]. Automatica, 1995, 31(9): 1349-1359.
  • 2Eun Jae jeung, Do Chang oh, Jong Hae Kim, et al. Robust controller design for uncertain systems with time delays: LMI approach [J]. Automatica, 1996, 32(8): 1229-1231.
  • 3Lehnan B, Bentsman J, Lunel S V, et al. Vibrational control of nonlinear time lag systems with bounded delay: Averaging theory,stability, and transient behavior[J]. IEEE Trans. on, Automat,Contr., 1994,39(3): 898-912.
  • 4Niculescu S I, Verrist E I, Dugard L, et al. Stability and robust stability of time-delay systems[A]. A guided tour: in stability and control of time delay systems[C]. U K: Springe r-verlay, 1997,22(8): 1-71.
  • 5Tanaka K, Ikeda T, wang H O. Robust stabilization of a class of uncertain nonlinear system via fuzzy control: quadratic stabilizability,H∞ control theory, and linear matrix inequalities[J]. IEEE Trans.on Fuzzy systems, 1996,4(1): 1-13.
  • 6Tanaka K, Ikeda T, Wang H O. Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs [ J ].IEEE Trans. on Fuzzy systems, 1998, 6(2): 250-265.
  • 7Cao S G, Rees N M, Feng G. Quadratic stability analysis and design of continuous-time fuzzy control systems [ J ]. International Journal of Systems Science, 1996, 27(2): 193-203.
  • 8Cao S G, Rees N M, Feng G. H∞ control of nonlinear continuoustime systems based on dynamical fuzzy models [ J ]. International Journal of Systems Science, 1996, 27(9): 823-830.
  • 9Cao Y Y, Frank P M, Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach[J]. IEEE Trans. on fuzzy systems, 2000,8(2) ,200-211.
  • 10Kap Rai Lee, Jong Hae Kim, Eun Tae Jeung, et al. Output feedback robust H∞ control of uncertain fuzzy dynamic systems with time-varying delay[J]. IEEE Trans. on Fuzzy systems, 2000, 8(6): 657-663.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部