期刊文献+

基于四叉树划分的地面激光雷达数据简化 被引量:5

Ground-based LIDAR data simplification based on quad-tree partition
下载PDF
导出
摘要 在分析地面激光雷达的数据特性和现有数据简化方法的基础上,提出了一种基于四叉树划分的地面激光雷达数据简化方案,给出了算法的基本思想和实现方法。实验表明该算法对于呈平面分布的点云数据简化能达到很高的压缩比,并具有良好的边缘保持性能。 On the basis of analyzing the data of ground-based LIDAR and existing point cloud data simplification algorithms, a new ground-based LIDAR data simplification algorithm based on quad-tree partition was presented, the basic theory and the methods to make it reality were discussed in details. Some conclusions come from tests: the algorithm presented in this paper can get a high data compression ratio to point cloud data distributing on a plane approximately, and can keep edges perfectly.
出处 《计算机应用》 CSCD 北大核心 2005年第2期420-421,425,共3页 journal of Computer Applications
基金 国家自然科学基金(40271091)
关键词 地面激光雷达 数据简化 点云 地理信息系统 ground-based LIDAR data simplification point cloud GIS
  • 相关文献

参考文献6

二级参考文献14

  • 1苏旭.逆向工程中基于散乱数据点的曲面重构方法研究:硕士学位论文[M].南京:南京航空航天大学,2000..
  • 2Jiang XY, Bunke H. Edge detection in range images based on scan line approximation. Computer Vision and Image Understanding,1999,73(2): 183~ 199.
  • 3Hoover A, Jean-Baptiste G, Jiang XY, Flynn PJ, Bunke H, Goldgof DB, Bowyer K, Eggert DW, Fitzgibbon A, Fisher RB. An experimental comparison of range image segmentation algorithms. IEEE Transactions on PAMI, 1996,18(7):673--689.
  • 4Hoffman R, Jain AK. Segment and classification of range images. IEEE Transactions on PAMI, 1996,9(5):608---620.
  • 5Bihnes JA. A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. 1998. http://ssli.ee.washington.edu/people/bihnes/mypapers/em.ps.gz.
  • 6Redner RA, Walker HF. Mixture density, maximum likelihood and the EM algorithm. SIAM Review, 1984,26(2):195~239.
  • 7Hoover A, Powell MW. Range image segmentation comparison project. Department of Computer Science and Engineering,University of South Florida, 1996. http://marathon.csee.usf.edu/range/seg-comp/SegComp.html.
  • 8Raflery AE. Approximate Bayes factors and accounting for model uncertainty in generalizes linear model. Technical Report, 1993.http://www.stat.washington.edu/www/research/reports/1993/tr255 .ps.
  • 9Fraley C, Raftery AE. How many clusters? Which clustering method? Answers via model-based cluster analysis. Technical Report,1998. http://www.stat.washington.edu/www/research/reports/1998/tr329.ps.
  • 10Buhmann/M. Data clustering and learning. 2002. http://www-dbv.cs.uni-bonn.de,/pdf/buhmann.hobtann02.pdf.

共引文献146

同被引文献47

引证文献5

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部