摘要
在临床试验中,当病人序贯地来到时,我们总想自适应地为病人在两种可供选择的治疗方案中选择较优的一种治疗方案,由于受实验者是病人,所以这就显得特别重要.本文中,基于统计有效性,我们讨论临床试验中几种依赖于未知参数的最优配置规则,并提出相应的自适应设计模型,同时获得一些渐近性质.而这些渐近性质又表明文中提出的自适应设计模型能达到临床试验中的渐近最优配置规则.
We consider the clinical trials scenario where patients enter the trial sequentially, and the experimenter has to adaptively select the better of the two competing treatments for future applications. This is particularly important since the subjects are human patients. In this article, based on the statistical validity, we discuss several optimal allocation rules in the clinical trial, which depend on unknown parameters. Then, the corresponding adaptive design is proposed, and, some asymptotic properties are obtained. With these asymptotic results, we show that the adaptive designs in this article lead to the asymptotically optimal allocations.
出处
《应用概率统计》
CSCD
北大核心
2005年第1期67-75,共9页
Chinese Journal of Applied Probability and Statistics
基金
NationalNaturalScienceFoundationofChina(No.10271001)
关键词
自适应设计
罐子模型
强相合性
渐近正态性
最优设计
Adaptive designs, urn model, strong convergence, asymptotical normality, optimal design