期刊文献+

无网格伽辽金方法在线弹性断裂力学中的应用研究 被引量:10

STUDY ON THE APPLICATION OF ELEMENT FREE GARLERKIN METHOD IN LINEAR-ELASTIC FRACTURE MECHANICS
下载PDF
导出
摘要 通过对移动最小二乘形函数进行局部修正 ,将混合变换法应用于无网格伽辽金方法 ,给出分析线弹性断裂力学问题的有效的无网格伽辽金方法。这一方法克服了无网格伽辽金方法中常用的拉格朗日乘子法和罚函数法的缺点 ,实现了本质边界条件在节点处的精确施加。运用线弹性断裂力学理论 ,采用基于t 分布的新型权函数和部分扩展基函数 ,对有限板单边裂纹的应力强度因子和拉剪复合型裂纹的扩展进行分析。由于该方法仅需节点信息 ,而不需要节点的连接信息 ,从而避免了有限元方法中的网格重构 ,大大简化了裂纹扩展的分析过程。 An efficient element free Galerkin method is given for simulation of crack propagation. The modified moving least square (MLS) approximation, for implementing the essential boundary conditions, is given by establishing the relationship between the nodal value and the generalized displacement. The proposed method eliminates the shortcomings of Lagrange multipliers and penalty functions typically used in element free Galerkin method. As a consequence, the essential boundary conditions can be imposed directly at nodes. By using the theory of linear elastic fracture mechanics, a new type of weight function basing on t-distribution and partially enriched basis function, analysis of stress intensity factors and crack propagation is given for finite plates with single edge crack and with a mixed-mode crack in tensile-shear state, respectively. Without the connectivity information of elements, the burdensome remeshing, which is used in finite element method, is avoided in the present meshless method. The analysis of crack propagation is dramatically simplified. The examples reveal the effectiveness of the present method.
出处 《机械强度》 EI CAS CSCD 北大核心 2005年第1期108-111,共4页 Journal of Mechanical Strength
关键词 无网格伽辽金方法 本质边界条件 应力强度因子 裂纹扩展 混合变换法 Element free Galerkin method Essential boundary conditions Stress intensity factors Crack propagation Mixed transformation method
  • 相关文献

参考文献8

  • 1寇晓东,周维垣.应用无单元法追踪裂纹扩展[J].岩石力学与工程学报,2000,19(1):18-23. 被引量:48
  • 2袁振,李子然,吴长春.无网格法模拟复合型疲劳裂纹的扩展[J].工程力学,2002,19(1):25-28. 被引量:13
  • 3Belytschko T, LU Y Y, GU L.Element-free Galerkin methods. International Journal for Numerical Method in Engineering,1994,37:229~256.
  • 4Krongauz Y, Belytschko T. Enforcement of essential boundary conditions in meshless approximations using finite elements. Computer Methods in Applied Mechanics and Engineering, 1996,131:133~145.
  • 5Rao B N, Rahman S. An efficient meshless method for fracture analysis of cracks. Computational Mechanics,2000,26:398~408.
  • 6Chen J S, Pan C, Wu C T, et al. Reproducing kernel particle methods for large deformation analysis of non-linear structures . Computer Methods in Applied Mechanics and Engineering, 1996,139:195~227.
  • 7Chen J S, Wang H P. New boundary condition treatments in meshfree computation of contact problems. Comput Meth Appl Mech Engrg, 2000,187:441~468.
  • 8Erdogan F, Sih G C. On the crack extension in plates under plane loading with transverse shear. Journal of Basic Engineering, 1963, 85:519~527.

二级参考文献13

  • 1尹双增,断裂.损伤理论及其应用,1992年
  • 2Li F Z,Eng Fract Mech,1985年,21卷,2期,405页
  • 3Yan J F,J Appl Mech,1980年,47卷,2期,335页
  • 4Sih. G. C. and Barthelemy. B. M. Mixed mode fatigue crack growth predictions[J]. Engineering Fracture Mechanics, 1980, 13: 439-451.
  • 5Reimers. P. Simulation of mixed mode fatigue crack growth [J]. Comp.& Struct., 1991, 40:339-346.
  • 6Belytschko T, Gu L, Lu Y Y. Fracture and crack growth by element-free Galerkin methods[J]. Model Simul Mater Sci Engrg, 1994, 2:519-534.
  • 7Yau.et al. A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity[J]. J. Appl. Mech., 1980, 47:335-341.
  • 8Keisuke Tanaka. Fatigue crack propagation from a crack inclined to the cyclic tensile axis[J]. Engineering Fracture Mechanics, 1974, 6:493-507.
  • 9Michael A.Pustejovsky. Fatigue crack propagation in Titanium under general in-plane loading[J]. Engineering Fracture Mechanics, 1979, 11:9-15.
  • 10K. D. Thompson and S. D. Sheppard. Stress Intensity factors in shafts subjected to torsion and axial loading[J]. Engineering Fracture Mechanics, 1992, 42(6):1019-1034.

共引文献54

同被引文献81

引证文献10

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部