摘要
为减小行星轮式月球车车身在垂直方向的振动加速度,需要确定月球车悬挂系统的扭杆弹簧刚度和减振器阻尼的合理数值范围.因此建立了七自由度月球车的振动系统模型,并给出了月球车振动系统的振动微分方程和频率响应函数的计算方法,在确定月球车的路面输入谱密度的基础上推导了车身在垂直方向位移输出的二阶导数均方根值的计算公式,用Matlab软件编写的计算程序计算了车身在垂直方向位移输出的二阶导数的均方根值,从而确定了悬挂系统的扭杆弹簧刚度和减振器阻尼的合理数值范围.
To reduce body's vibration acceleration of lunar rover with planetary wheel in vertical direction, determining torsion bar spring stiffness of suspended system and reasonable damp value range of damper are needed. For this purpose, the vibration system model of 7 DOF lunar rover is established. The vibration system differential equation of the lunar rover and the calculation method of frequency response function are given. Based on determining ground input spectral density of the lunar rover, second derivative root-mean-square value calculation formula of the body in vertical direction of displacement output is derived. The above root-mean-square value is computed by Matlab software programming to obtain and determine the torsion bar spring stiffness and reasonable range of damper parameters.
出处
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2005年第1期32-35,144,共5页
Journal of Harbin Institute of Technology
基金
国家自然科学基金资助项目(50375032).
关键词
月球车
动力学分析
刚度
阻尼
Degrees of freedom (mechanics)
Differential equations
Lunar landing
Planetary landers
Stiffness
Vibrations (mechanical)