期刊文献+

The Discharge and Charge Behavior of the Pb-Birnessite in LiOH Aqueous Solution

The Discharge and Charge Behavior of the Pb-Birnessite in LiOH Aqueous Solution
下载PDF
导出
摘要 The Pb-birnessite was prepared by ion exchange from K-birnessite, which was synthesized by calcination of KMnO4. Measure methods of SEM (scanning electron microscopy), XRD (X-ray diffraction), TGA (thermogravimetric analyse), AAS (atomic absorption spectrometry), slow-scanning cyclic voltammetry and galvanostatic step discharge/charge are applied. Potentiostatic step method is used for the determination of a chemical diffusion coefficientD is Li+. XRD patterns indicate the Pb-birnessite has layered structure. Slow-scanning voltammograms show the occurrence of a single-phase redox reaction. The galvanostatic discharge/charge curves indicate the Pb-birnessite has better rechargeability at a high discharge/charge rate. Li+ can reversibly intercalate into and de-intercalate from the Pb-birnessite during discharge and charge. Pb between the layers stabilized the layered structure and prevented partially the conversion to spinel-like structures. The average value of the chemical diffusion coefficientD of Li+ intercalated into the Pb-birnessite is 8.24×10?11 cm2·s?1. Key words Birnessite - Pb2+-doped - single-phase redox reaction - Lithium intercalation CLC number O 646.54 Foundation item: Supported by the National Natural Science Foundation of China (20077020)Biography: ZHU Xin-gong (1979-), male, Master, research direction: electrochemistry. The Pb-birnessite was prepared by ion exchange from K-birnessite, which was synthesized by calcination of KMnO4. Measure methods of SEM (scanning electron microscopy), XRD (X-ray diffraction), TGA (thermogravimetric analyse), AAS (atomic absorption spectrometry), slow-scanning cyclic voltammetry and galvanostatic step discharge/charge are applied. Potentiostatic step method is used for the determination of a chemical diffusion coefficientD is Li+. XRD patterns indicate the Pb-birnessite has layered structure. Slow-scanning voltammograms show the occurrence of a single-phase redox reaction. The galvanostatic discharge/charge curves indicate the Pb-birnessite has better rechargeability at a high discharge/charge rate. Li+ can reversibly intercalate into and de-intercalate from the Pb-birnessite during discharge and charge. Pb between the layers stabilized the layered structure and prevented partially the conversion to spinel-like structures. The average value of the chemical diffusion coefficientD of Li+ intercalated into the Pb-birnessite is 8.24×10?11 cm2·s?1. Key words Birnessite - Pb2+-doped - single-phase redox reaction - Lithium intercalation CLC number O 646.54 Foundation item: Supported by the National Natural Science Foundation of China (20077020)Biography: ZHU Xin-gong (1979-), male, Master, research direction: electrochemistry.
出处 《Wuhan University Journal of Natural Sciences》 CAS 2004年第6期957-961,共5页 武汉大学学报(自然科学英文版)
基金 theNationalNaturalScienceFoundationofChina (2 0 0 770 2 0 )
关键词 BIRNESSITE Pb2+-doped single-phase redox reaction Lithium intercalation Birnessite Pb2+-doped single-phase redox reaction Lithium intercalation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部