期刊文献+

Bernstein算子和Grünwald算子的线性组合 被引量:1

On Linear Combination of Bernstein and Grünwald Operators
下载PDF
导出
摘要 以第一类n阶Chebyshev多项式的零点作为插值节点,通过Bernstein算子和Gr櫣nwald算子的线性组合构造一个新算子Gn(f;x).如果f(x)∈Cj[-1,1](0≤j≤9),则Gn(f;x)在区间[-1,1]上一致收敛于f(x)∈Cj[-1,1](0≤j≤9),并且其收敛阶达到最佳,饱和阶为1/n10. In this paper a new operator G_n(f;x) is constrcucted by means of the linear combination of Bernstein and Grünwald operators on the basis of taking the zeros of the first kind of Chebyshev polynomial of degree n as the interpolating nodes. G_n(f;x) converges to the f(x)∈C^j_([-1,1]), 0≤j≤9 on [-1,1] uniformly and has the best approximation order if the function f(x)∈C^j_([-1,1]), 0≤j≤9. The saturation order is 1/n^(10).
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2005年第1期5-9,共5页 Journal of Jilin University:Science Edition
关键词 BERNSTEIN算子 Grtinwald算子 收敛阶 饱和阶 Bernstein operator Grünwald operator convergence order saturation order
  • 相关文献

参考文献5

  • 1VarmaAK. A New Proof of Timan's Approximation Theorem [J]. Journal of Approximation Theory , 1976,18:57-62.
  • 2HE Jia-xing, ZHANG Yudei, LI Song-tao. On a New Interpolation Process of Bernstein [ J ]. Acta Math Hungar, 1996, 73 (4): 327-334.
  • 3Grunwald G. On a Convergence Theorem for the Lagrange Interpolation Polynomial [ J ]. Bull of AMS, 1941,47: 271- 275.
  • 4XIE Ting-fan, SUN Xie-hua. On the Interpolation Processes of Bernstein Type and Bernstein-Grunwald Type [ J ]. Acta Math Sinica, 1985, 28(4): 455-469.
  • 5SUN Xie-hua. On a Ditzian-Totik Theorem [J]. Journal of Approximation Theory, 1994, 77: 179-183.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部