期刊文献+

一类带不定权拟线性椭圆方程组的解

Solutions for a System of Quasilinear Elliptic Equations with Indefinite Weights
下载PDF
导出
摘要 利用临界点理论中的山路引理,讨论一类带不定权拟线性椭圆方程组的Dirichlet问题.借助相应带不定权特征值问题的第一特征值建立了其非平凡解的存在性定理,其中方程组中特征值参数小于某已知常数. In this paper, the Dirichlet problem of a class of quasilinear elliptic systems with indefinite weights, which comes from mathematical models of Non Newton fluid flow, population evolution, pattern (formation) etc, is discussed by using Mountain Pass Lemma in critical point theory. The existence of a nontrivial weak solution is established with the help of the first eigenvalue of the corresponding eigenvalue problem, where the eigenvalue parameter is less than a known constant.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2005年第1期20-23,共4页 Journal of Jilin University:Science Edition
基金 教育部跨世纪优秀人才基金.
关键词 拟线性椭圆方程组 不定权 山路引理 quasilinear elliptic system indefinite weights Mountain Pass Lemma
  • 相关文献

参考文献4

  • 1Alves D, Filho D, Soluo A. On Systems of Elliptic Equations Involving Subcritical or Critical Sobolev Exponents [J].Nonlinear Analysis, TMA , 2000, 42: 771-787.
  • 2Boccardo L, De Figueiredo D G. Some Remarks on a System of Quasilinear Elliptic Equations [ J ]. Nonlinear Differential Equations and Applications, 2002, 9: 309-323.
  • 3Cuesta M. Eigenvalue Problems for the p-Laplacian with Indefinite Weights [ J ]. Electron J Differential Equations, 2001,33: 1-9.
  • 4Ambrosetti A, Rabinowitz P H. Dual Variational Methods in Critical Points Theory and Applications [ J ]. Journal of Functional Analysis, 1973, 14: 349-381.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部