期刊文献+

算子的超不变子空间与Wolf谱

Hyperinvariant Subspaces and Wolf Spectrum of Operators
下载PDF
导出
摘要 对于与Volterra算子V交换的算子T,通过构造和计算,证明了:如果f(x)=1是T的一个循环向量,则A′(V)=A′(T).因而V的不变子空间都是T的超不变子空间.此外还证明了T是单的当且仅当T是稠值域的,进而σ(T)=σe(T)=σlre(T). Let T be in the commutant of Volterr a operator V, by construction and calculation, it is proved that if the function f(x)=1 is a cyclic vector of T, then A′(V)=A′(T). Thus all the invariant subspaces of V are hyperinvariant for T. Moreover, it is also proved that if only if ker T={0}(ran T)=H, σ(T)=(σ_e(T)=)σ_(lre)(T).
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2005年第1期29-32,共4页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10371049).
关键词 VOLTERRA算子 换位 循环向量 超不变子空间 酉自伴 稠值域 Wolf谱 Volterra operator commutant cyclic vector hyperinvariant subspace unitarily self-adjiont range-dense Wolf spactrum
  • 相关文献

参考文献9

  • 1Gohberg I G, Krlein M G. Theory and Application of Volterra Operators in Hilbert Space [ M ]. Probidence: Amer Math, 1976.
  • 2Livsic M S. On a Certain Class of Operators in a Hilbert Space [J]. Amer Math Soc, 1960, 13(2): 61-83.
  • 3Erdos J A. The Commutant of the Volterra Opertor [J]. Int Eq Operator Thy, 1982, 5: 127-130.
  • 4Sarason D. Invariant Subspace of Topics in Operator Theory [ C ]. In: Pearcy C, ed. Math Surveys, Vol. 13. Provi dence: Amer Math Soc, 1974.
  • 5Dixmier J. Les Operateurs Permutables a I'operateur Integral [ J]. Fas 2 Portugal Math, 1949, 8: 73-84.
  • 6Donaghue W F. The Lattic of Invariant Subspace of a Completely Continuous Quasinilpotent [ J ]. Pacific J Math, 1957, 7: 1031-1035.
  • 7BrodskiiMS. OnaProblemofLMGelfand [J]. UspekiMathNank, 1957,12: 129-132.
  • 8Foias C, williams J P. Some Remarks on the Volterra Operator [J]. Proc Amer Math Soc, 1972, 31( 1 ): 177-184.
  • 9Fcrnando Leon-Saavedra, Antonio Pioueras-Lerana. Cycnc Properties of Volterra Operator [ J ]. Pacific Journal of Math,2003, 211(1): 157-162.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部